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PLANE TRIGONOMETRY.

CHAPTER I.

GENERAL PRINCIPLES OP PLANE TRIGONOMETRY.

1. Trigonometry is the science which treats of

angles and triangles.

2. Plane Trigonometry treats of plane triangles.

[B. p. 36.]*

3. To solve a Triangle is to calculate certain of

its sides and angles when the others are known.

It has been proved in Geometry that, when three of the six

parts of a triangle are given, the triangle can be constructed,

provided one at least of the given parts is a side. In these

cases, then, the unknown parts of the triangle can be deter-

mined geometrically, and it may readily be inferred that they

can also be determined algebraically.

But a great difficulty is met with on the very threshold of

the attempt to apply the calculus to triangles. It arises from

the circumstance, that two kinds of quantities are to be intro-

* References between brackets, preceded by the letter B., refer to

the pages in the stereotype edition of Bowditch's Navigator.



4 PLANE TRIGONOMETRY. [CH. I.

Solution of all triangles reduced to that of right triangles.

duced into the same formulas, sides, and angles. These quan-

tities are not only of an entirely different species, but the law of

their relative increase and decrease is so complicated, that

they cannot be determined from each other by any of the com-

mon operations of Algebra.

4. To diminish the difficulty of solving triangles as

much as possible, every method has been taken to com-

pare triangles with each other, and the solution of all

triangles has been reduced to that of a Limited Series

of Right Triangles.

a. It is a well known proposition of Geometry, that, in all

triangles, which are equiangular with respect to each other,

the ratios of the homologous sides are also equal. [B. p. 12.]

If, then, a series of dissimilar triangles were constructed con-

taining every possible variety of angles : and, if the angles

and the ratios of the sides were all known, we should find it

easy to calculate every case oftriangles. Suppose, for instance,

that in the triangle ABC (fig. 1.), the sides of which we shall

denote by the small letters a, b, c, respectively opposite to the

angles A, B
f

C, there are given the two sides b and c

and the included angle A, to find the side a and the angles

B and C. We are to look through the series of calcu-

lated triangles, till we find one which has an angle equal

to A, and the ratio of the^ including sides equal to that of

b and c. As this triangle is similar to ABC, its angles and

the ratio of its sides must also be those of the triangle ABC,
which is therefore completely determined. For, to find the

side a, we have only to multiply the ratio which we have found

of b to a, that is, the fraction - by the side b or the ratio - by

the side c.



§ 4.] GENERAL PRINCIPLES.

Solution of all triangles reduced to that of right triangles.

6. A series of calculated triangles is not, however, needed

for any other than right triangles. For every oblique triangle

is either the sum or the difference of two right triangles ; and

the sides and angles of the oblique triangle are the same with

those of the right triangles, or may be obtained from them by

addition or by subtraction. Thus the triangle ABC is the

sum (fig. 2.) or the difference (fig. 3.) of the two right trian-

gles ABP and BpC. In both figures the sides AB, BC9

and the angle A belong at once to the oblique and the right

triangles, and so does the angle BCA (fig. 2.) or its supple-

ment (fig. 3.) ; while the angle ABC is the sum (fig. 2.), or,

the difference (fig. 3.) of ABP and PBC; and the side AC
is the sum (fig. 2.), or the difference (fig. 3.) ofAP and PC.

c. But, as even a series of right triangles, whiqh should con-

tain every variety of angle, would be unlimited, it could never

be constructed or calculated. Fortunately, such a series is

not required ; and it is sufficient for all practical purposes to

calculate a series in which the successive angles differ only by

a minute, or, at the least, b ya second. The other triangles can

be obtained, when needed, by that simple principle of inter-

polation made use of to obtain the intermediate logarithms

from those given in the tables.

1*



PLANE TRIGONOMETRY. [cH. II.

Sine, tangent, secant.

CHAPTER II.

SINES, TANGENTS, AND SECANTS.

5. Confining ourselves, for the present, to right tri-

angles, we now proceed to introduce some terms, for

the purpose of giving simplicity and brevity to our

language.

The Sine of an angle is the quotient obtained by

dividing the leg opposite it in a right triangle by the

hypothenuse.

Thus, if we denote (fig. 4.) the legs BC and AC by the

letters a and 6, and the hypothenuse AB by the letter A, we

have.

sin. A = -, sin. B = T . (1)
h li

6. The Tangent of an angle is the quotient obtained

by dividing the leg opposite it in a right triangle, by

the adjacent leg.

Thus, (fig. 4.),

tang. A = -, tang. B= -. (2)

7. The Secant of an angle is the quotient obtained

by dividing the hypothenuse by the leg adjacent to the

angle.



§ 10.] SINES, TANGENTS, AND SECANTS.

Cosine, cotangent, cosecant.

Thus, (fig. 4.)

sec. A = T, sec. B = -.
b a

(3)

8. The Cosine, Cotangent, and Cosecant of an angle

are respectively the sine, tangent, and secant of its

complement.

9. Corollary. Since the two acute angles of a right

triangle are complements of each other, the sine, tan-

gent, and secant of the one must be the cosine, cotan-

gent, and cosecant of the other.

Thus, (fig. 4.),

sin.

cos.

A = cos.

sin.

tang. A = cotan.I2 ==
a

cotan. A = tang. B = -

A — cosec.2? =

cosec. A = sec. B =

(4)

10. Corollary. By inspecting the preceding equations

(4), we perceive that the sine and cosecant of an angle

are reciprocals of each other ; as are also the cosine

and secant, and also the tangent and cotangent.



PLANE TRIGONOMETRY. [CH. II.

To find the tangent.

So that

cosec. A X sin. A = - X t — —7 = 1
a A a A

sec. .4 X cos. ^4

tang. A X cotan. -4

A b_bh_
b* h-~ bh~
a b ab

a ab

whence

cosec. A =22 - 7 , or sin. A == T
sin. .4 cosec. A

sec.

1 A 1
cotan. A —

-, or tang. A =
tan. ^4 cotan. A

(5)

: --, or cos. A i= j- ^ (6)
cos. ^4 sec. A {

v '

As soon, then, as the sine, cosine, and tangent of an angle

are known, their reciprocals the cosecant, secant, and cotan-

gent may easily be obtained.

11. Problem. To find the tangent when the sine

and cosine of an angle are known.

Solution. The quotient of sin. A divided by cos. A is, by

equations (4),

sin. A a b ah a

cos. A ~~
h ' k bh~~ b'

But by (4)

hence

tang. 4 = -;

tang. A = sin. A
cos. A* (?)



§ 4.] SINES, TANGENTS, AND SECANTS. 9

Sum of squares of sine and cosine.

12. Corollary. Since the cotangent is the reciprocal

of the tangent, we have

cotan. A =. — —

.

(8)
sin. A v '

13. Problem. To find the cosine of an angle when

its sine is known.

Solution. We have, by the Pythagorean proposition, in the

right triangle ABC (fig. 4.)

a2 + b 2 =z h 2 .

But by (4)

/ • -V- , / A- «2 ,
° 2 a2 +b 2 h2

•

or (sin. 4) 2 + (cos. 4) 2 = 1 •

(9)

that is, the sum of the squares of the sine and cosine is

equal to unity.

Hence (cos. A) 2 = 1 — (sin. A) 2
,

cos. A = VI— (sin. A) 2
. (10)

I

14. Corollary. Since

h 2 — a2 z= b 2
,

we have by (4)

h2 a2 h2— a2 b 2
t

{
sec.A) 2 -(t^g.A) 2 = -^-- = —^— = -= h

or (sec. A) 2 — (tang, ^l) 2 = 1

;

(11)

whence (sec. A) 2 == 1 + (tang. A) 2
.
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Calculation of cosine, &c.

15. Corollary. Since

h 2 — b 2 =za2

we have by (4)

axo / * A h2 b2 h2—l> 2 a2
,(cosec-4) 2— (cotan.^4)2 =— - = — = —_ 1,v '

v
' a2 a2 a 2 a2 — '

or (cosec. A) 2 — (cotan. A) 2 = I

;

(12)

whence (cosec. A) 2 = 1 -f- (cotan. A) 2
.

16. Scholium. The whole difficulty of calculating

the trigonometric tables of sines and cosines, tangents

and cotangents, secants and cosecants is, by the pre-

ceding propositions, reduced to that of calculating the

sines alone.

17. Examples.

I. Given the sine of the angle A, equal to 0.4568, calculate

its cosine, tangent, cotangent, secant, and cosecant.

Solution. By equation (10)

cos. A = s/l— (sin. A

)

2 = V(l + sin..4)(l— sin.^l).

1 -+- sin. A = 1.4568 0.16340

1 — sin. A = 0.5432 9.73496

(cos. A) 2 2|9.89836

cos. A = 0.8896 9.94918.

By (7) and (8)

- sin. A . cos. A
tang. A = cotan. A = -: -r.

cos. A sin. A



$ 17.] SINES, TANGENTS, AND SECANTS. 11

Calculation of cosine, &c.

sin. A = 0.4568 9.65973 (ar. co.) 10.34027

cos. A = 0.8896 (ar. co.) 10.05082 9.94918

tang. A = 0.5135 9.71055 (ar. co.) 10.28945

cotan. A = 1.9474.

By (6)

sec. A = r, cosec. A
cos. A sm. A

log. sec. A =— log. cos. A = 0.05082,

sec. A = 1.1241.

log. cosec. A =— log. sin. ,4 = 0.34027,

cosec. it = 2.1891.

2. Given sin. 4. =0.1111 ; find the cosine, tangent, cotan-

gent, secant, and cosecant of A,

Ans. cos. A = 0.9938

tang. .4=0.1118

cotan. A = 8.9452

sec. A = 1.0062

cosec. 4 f= 9.0010.

3. Given sin. J. = 0.9891 ; find the cosine, tangent, cotan-

gent, secant, and cosecant of A,

A?is. cos. A = 0.1472

tang. A = 6.7173

cotan. 4 = 0.1489

sec. A = 6.7914

cosec. A= 1.0110.
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Sine, &c. in the circle whose radius is unity.

18. Theorem. The sine of an angle is equal to the

perpendicular let fall from one extremity of the arc,

which measures it in the circle, whose radius is unity,

upon the radius passing through the other extremity.

Proof. Let BCA (fig. 5.) be the angle, and let the radius

of the circle AB A 1A be

AC= unity = 1.

Let fall, on the radius AC, the perpendicular BP, and we

have by § 5, in the right triangle BCP,

sin.BCP = |J =^ = BF.

19. Theorem. In the circle of which the radius is

unity, the cosine of an angle is equal to the portion of

the radius, which is drawn perpendicular to the sine,

included between the sine and the centre.

Proof. For if BCA (fig. 5.) is the angle, we have, by § 9,

C P CT>
cos. BCA =~ = ZZL = CP.

20. Theorem. In the circle of which the radius is

unity, the secant is equal to the length of the radius

drawn through one extremity of the arc which measures

the angle, and produced till it meets the tangent drawn
through the other extremity.

The trigonometric tangent is equal to that portion

of the tangent, drawn through one extremity of the arc,

which is intercepted between the two radii which termi-

nate the arc.
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Sine, &c. in this and other systems.

Proof. If CB (fig. 5.) is produced to meet the tangent A
at T, we have, by (2) and (3), in the right triangle BCT,

sec. BCA =~ - -^- =Cr

tang. BCA = -^ =— = ^T.

21. Scholium. The preceding theorems (18-20),

have been adopted by most writers upon trigonometry,

as the definitions of sine, cosine, tangent, and secant,

except that the radius of the circle has not been limited

to unity. [B. p. 6.]

By not limiting the radius to unity the sines, &c. have not

been fixed values, but have varied with the length of the

radius ; whereas their values, in the system here adopted, are

the fixed ratios of their values as ordinarily given to the radius

of the circle in which they are measured. Thus, if R is the

radius, we have

sin., cos., &c. in the common system == R X sin., cos., &c.

in this system.

22. Corollary. If the angle is very small, as C (fig. 6.), the

arc AB will be sensibly a straight line, perpendicular to the

two radii CA and CB, drawn to its extremities, and will sen-

sibly coincide with the sine and tangent ; while the cosine will

sensibly coincide with the radius CA
9
and the secant with the

radius CB.

Hence, the sine and tangent of a very small angle

are nearly equal to the arc ivhich measures the angle,

2



14 PLANE TRIGONOMETRY. [CH. II.

Sine, &c. of very small angles.

in the circle the radius of which is unity ; and its cosine

and secant are nearly equal to unity.

23. Problem. To find the sine of a very small angle.

Solution. Let the angle C (fig. 6.) be the given angle, and

suppose it to be exactly one minute. The arc AB must in

this case be ^jsirjir of the semicircumference, of which unity

or CA is radius. But the value of the semicircumference, of

which unity is radius, has been found in Geometry to be

3.1415926. Therefore, by §22,

™,.r=^ =Hi^ = o.o<«9 . m
In the same way we might find the sine of any other small

angle, or we might, in preference, find it by the following

proposition.

24. Theorem. The sines of very small angles are

proportional to the angles themselves.

Proof. Let there be the two small angles, BCA and B'CA
(fig. 7.) Draw the arc ABB 1 with the centre C, and the radius

unity. Then, as angles are proportional to the arcs which

measure them,

BCA : BCA = BA : B'A.

But, by § 22,

sin. BCA =f BA, sin. BCA = B' A ;

whence

BCA : BCA = sin. BCA : sin. BCA.

a. This proposition is limited to angles so small, that their

arcs may be considered as straight lines. It is found in prac-
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Sines of small angles.

tice, that the angles may be as large as two degrees, provided

the approximations are not carried beyond five places of deci-

mals. The investigation of the sines of larger angles requires

the introduction of some new formulas.

25. Examples.

1. Find the sine of 12' 13", knowing that

sin. 1' = 0.00029.

Solution. By (28)

1': 12' 13": : sin. V : sin. 12' 13",

or

60" : 733" : : 0.00029 : sin. 12' 13".

Hence

sin. 12' 13" = ** X 0-00029 =Qm . Ans
bO

2. Find the sine of 7' 15", knowing that

sin. V = 0.00029.

Ans. sin. 7' 15" = 0.00210.

3. Find the sine of 2' 31", knowing that

sin. 1' == 0.00029.

Ans. sin. 2' 31"= 0.00073.

26. Problem. Given the sine of any angle, to find

the sine of another angle which exceeds it by a very

small quantity.
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Sine of an angle differing very little from a given angle.

Solution. Let the given angle be BCA (fig. 8), which we

will denote by the letter 31; and let the angle whose sine is

required be B'CA, exceeding the former by the small angle

B'CB, which we will denote by the letter m ; so that

M= BCA, m =B'CB,

3f+m = B'CA.

From the vertex C as a^ centre, with the radius unity, de-

scribe the arc ABB'. From the points B and B' let fall BP
and B'P' perpendicular to AC.

We have, by § 18 and 19,

Sine. M=BP
sin. BCA = sin. (31 -f m) = B' P'

cos. 31= PC;

Draw BR perpendicular to B' P', and

B> P< =BP + BR,
or

sin. (31+ in) = sin. 31+ BR.

The triangles BCP and BBR
}
having their sides perpen-

dicular each to each, are similar, and give the proportion

BC: BB=CP : BR.
But, by § 22,

BB' === sin. m.

Hence

1 : sin. m = cos. 31 : BR
;

and BR = sin. m. cos. 3T,

which gives, by substitution,
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Cosine of an angle differing very little from a given angle,

sin. (M+ m) = sin. M+ sin. m. cos. M. (13)

27. Corollary. If m were 1', (13) would become

sin. (M -f- l'J = sin. iff -f- sin. 1'. cos. M,

= sin. Jf+ 0.00029 cos. M. (14)

We may, by this formula, find the sine of 2' from that of 1',

thence that of 3', then of 4', of 5', &,c, to the sine of angle

of any number of degrees and minutes.

28. Corollary. We can, in a similar way, deduce the value

of cos. (M+ m).

For, by § 19,

cos. (if+ to) = P'C=PC— PP',

= cos. M—BR.
But the similar triangles

BB'R and BCP give the proportion

BC:BB' = BP: BR,

or

Hence

1 : sin. m sss sin. Jf : .RR.

BR =z sin. m. sin. M,

whence

cos. (Jf -f- m) = cos. ifcT— sin. m. sin. i!f, (15)

and, if we make m = 1', this equation becomes

cos. (1/+ I') = cos« M— sin. T# sin M,

ss cos. if— 0.00029 sin. ilif. (16)

2*
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Sine and cosine of angles.

29. Examples.

1. Given the sine of 23° 28' equal to 0.39822, to find the

sine of 23° 29'.

Solution. We find the cosine of 23° 28' by (10) to be

cos. 23° 28' = 0.91729.

Hence, by (14), making M= 23° 28'

sin. 23° 29' = sin. 23° 28' + 0.00029 cos. 23° 28',

= 0.39822 + 0.00026,

= 0.39848.

Ans. sin. 23° 29' — 0.39S48.

2. Given the sine and cosine of 46° 58' as follows,

sin. 46° 58' == 0.73096, cos. 46° 58' = 0.68242,

find the sine of 46° 59'.

Ans. sin. 46° 59' = 0.73116.

3. Given the sine and cosine of 11° 10' as follows,

sin. 11° 10' m 0.19366, cos. 11° 10' fc= 0.98107,

find the cosine of 11° ll 7
.

Ans. cos. 11° 11 = 0.98101.

30. By the formulas here given a complete table of

sines and cosines might be calculated. Such tables

have been actually calculated
; and table XXIV. of the

Navigator is such a table ; their logarithms are given

in table XXVII. of the Navigator.
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Natural and artificial sines. Radius of table.

The sines, cosines, &c. of table XXIV. are called natural,

to distinguish them from their logarithms, which are some-

times called their artificial sines, cosines, &c.

The radius of table XXIV. is

10 5 == 100000,

so that this table is, by § 21, reduced to the present system

by dividing each number by 100000, that is, by prefixing the

decimal point to each of the numbers of the table.

The radius of table XXVII. is

10 10 z=z 10000000000,

so that this table is reduced to the present system by subtract-

ing from each number the logarithm of this radius, which

is 10, that is by subtracting 10 from each characteristic.

The method of using these two tables is fully explained in

pp. 33 - 35, and p. 390, of the Navigator.
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Hypothenuse and an angle given.

CHAPTER III.

RIGHT TRIANGLES.

31. Problem. To solve a right triangle^ when the

hypothenuse and one of the angles are known. [B. p. 38.]

Solution. Given (fig. 4) the hypothenuse h and the angle

A, to solve the triangle.

First. To find the other acute angle B, subtract the given

angle from 90°.

Secondly. To find the opposite side a
}
we have by (1)

a
sin. A z= T,

h

which, multiplied by h, gives

a = h sin. A ; (17)

or, by logarithms,

log. a = log. h + log. sin. A.

Thirdly. To find the side 6, we have by (4)

cos. A = -r,

a

which, multiplied by h, gives

b = 7i cos. .4
; (18)

or, by logarithms,

log. b =z log. 7* + l°g* cos. ii.
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Leg and an angle given.

32. Problem. To solve a right triangle, when a leg

and the opposite angle are known. [B. p. 39.]

Solution. Given (fig. 4.) the leg a, and the opposite angle

A, to solve the triangle.

First. The angle B is the complement of A.

Secondly. To find the hypothenuse h, we have by (17)

a zz: h sin. A,

which, divided by sin. A, gives by (6)

h = ~ — — a cosec. A ; (19)
sin. A v

or, by logarithms,

log. h = log. a + (ar. co.) log. sin. A

s= log. a -J-
log. cosec. A.

Thirdly. To find the other leg 6, we have by (4)

b
cotan. .4 = -,

a

which, multiplied by a, gives

b =i a cotan. A
; (20)

or, by logarithms,

log. b = log. a -j- log. cotan. ^4.

33. Problem. To solve a right triangle, when a leg

and the adjacent angle are known. [B. p. 39.]

Solution. Given (fig. 4.) the leg a and the angle JB, to solve

the triangle.

First. The angle A is the complement of B.
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Hypothenuse and a leg given.

Secondly. The other parts may be found by (19) and (20),

or from the following equations, which are readily deduced

from equations (4) and (6),
**

h z= - = a sec. B,
cos. B (21)

b =z a tang. B

;

(22)

or, by logarithms,

log. h =z log. a -f- log. sec. B,

log. b = log. a + log. tang. B.

36. Problem. To solve a right triangle^ when the

hypothenuse and a leg are known. [B. p. 40.]

Solution. Given (fig. 4.) the hypothenuse h and the leg a,

to solve the triangle.

First. The angles A and B are obtained from equation (4),

sin. A = cos. B =
j ; (23)

or, by logarithms,

log. sin. A = log. cos. B = log. a -j- (ar. co.) log. h.

Secondly. The leg b is deduced from the Pythagorean prop-

erty of the right triangle, which gives

a2 + 62 = h*, (24)

whence

&2 p- 7,2 _ a2 = (A + a) (A — a),

6 = V (7,2 _ a2) — ^ [(^ + fl
) ^ _ a)]

j (25)

by logarithms,

log. b. = i log. (A2— a*) = J [log. (h + a) + log. (A— a)].
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The legs given.

35. Problem. To solve a right triangle, when the

two legs are known, [B. p. 40.]

Solution. Given (fig. 4.) the legs a and 6, to solve the

triangle.

First. The angles are obtained from (4)

^ a
tang. A =p cotan. B = -

;

or, by logarithms,

log. tang. A = log. cotan. B = log. a + (ar. co.) log. b.

Secondly, To find the hypothenuse, we have by (24)

h = V (a2 +& 2
).

Thirdly. An easier way of finding the hypothenuse is to

make use of (19) or (20)

h = a cosec. A = a sec. B

;

or, by logarithms,

log. h = log. a. + l°g- cosec. ^L = log. a -|- log. sec. Z?.

36. Examples.

1. Given the hypothenuse of a right triangle equal to 49.58,

and one of the acute angles equal to 54° 44' ; to solve the

triangle.

Solution. The other angle = 90° — 54° 44' = 35° 16'.

Then making h = 49.58, and A = 54° 44'; we have, by (17)

and (18),
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Examples of right triangles.

h = 49. 58 1.69531 1.69531

A = 54° 44' * sin. 9.91194 cos. 9.76146

a = 40. 481 1.60725; b = 28. 627 1.45677.

Am. The other angle = 35° Iff;

The less -f 40 '481
>me legs _| 28.627.

2. Given the hypothenuse of a right triangle equal to 54.571,

and one of the legs equal to 23.479 ; to solve the triangle.

Solution. Making h = 54.571, a == 23.479;

we have, by (23),

%
a = 23.479 1.37068

h = 54.571 (ar. co.) 8.26304

A = 25° 29' sin.

B = 64° 31' cos. | 9.63372.

By (25),

h + a = 78.050 1.89237

h — a = 31.092 1.49265

b 2 2 |3.38502

b = 49.262 1.69251

Ans. The other leg = 49.262

The angles-} f° JJ

3. Given the two legs of a right triangle equal to 44.375,

and 22.165; to solve the triangle.

* To avoid negative characteristics the logarithms are retained

as in the tables, according to the usual practice, with the logarithms of

decimals, as in B. p. 29.



<§> 36.] RIGHT TRIANGLES. 25

Examples of right triangles.

Solution. Making a — 44.375, b — 22.165 ; we have,

a — 44.375 1.64714 1.64714

b = 22.165 (ar. co.) 8.65433

A z= 63° 27' 28" tang. ) 1 om 47 . cosec. > - n 04fto7
J5z=z26°32/ 32 / cotan. r030147

' sec. j
1004837

h == 49.603 1.69551

Ans. The hypothenuse == 49.603

{63° °7 / 28//

26^3232"

4. Given the hypothenuse of a right triangle equal to

37.364, and one of the acute angles equal to 12° 30' ; to solve

the triangle.

Ans. The other angle = 77° 30'

rp, , f 8.087
The legs =

| 3a47g

5. Given one of the legs of a right triangle equal to 14.548,

and the opposite angle equal to 54° 24' ; to solve the triangle.

Ans. The hypothenuse == 17.892

The other leg— 10.415

The other angle = 35° 36^

6. Given one of the legs of a right triangle equal to 11.111,

and the adjacent angle equal to 11° ll 7

, to solve the triangle.

Ans. The hypothenuse =n 11.326

The other leg =z 2.197

The other angle = 78° 49 ;
.

3
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Examples of right triangles.

7. Given the hypothenuse of a right triangle equal to 100,

and one of the legs equal to 1, to solve the triangle.

Arts. The other leg = 99.995

0° 34' 23"
The angles =

{£^ 23"

8. Given the two legs of a right triangle equal to 8.148, and

10.864, to solve the triangle.

Ans. The hypothenuse = 13.58

The angle, ={S:
5
?:$
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Sine of the sum of two angles.

CHAPTER IV.

GENERAL FORMULAS.

37. The solution of oblique triangles requires the

introduction of several trigonometrical formulas, which

it is convenient to bring together and investigate all at

once.

38. Problem* To find the sine of the sum of two

angles.

Solution. Let the two angles be BAC and B'AC (fig. 9),

represented by the letters M and N. At any point C, in the

line AC, erect the perpendicular BB 1
. From B let fall on

AB' the perpendicular BP. Then represent the several lines,

as follows,

a — BC, a1 = BC, b = AC
h = AB, h 1 = AB', x — BP
M=BAC, NzzzBAC.

Then, by (4),

sin. BAC = sin. M = T,
sin. N z=z %-

ii h;

«r b b
COS. M= T ,

COS. N = -77
ft /*'

sin. JBAP = sin. (if+ N) =^-=|.
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Sine of the difference of two angles.

Now the triangles BPB 1 and B'AC, being right-angled,

and having the angle B 1 common, are equiangular and similar.

Whence we derive the proportion

AB< : BB< — ACBP,

whence

and

h! : a + «
' = & • x

?

_ab + a'b
X ~

h'
'

,v, . ,T \ x ab4-a'b

The second member of this equation may be separated into

factors, as follows,

/,r . ,T x
ab

,
ba'

a b b a'

whence, by substitution, we obtain

sin. (i*f+ N) — sin. M cos. iV+ cos. 1/ sin. iV. (26)

39. Problem. To find the sine of the difference of

two angles.

Solution. Let the two angles be BAC and B'AC (fig. 10),

represented by M and N. At any point C in the line AC
erect the perpendicular BBC. From B let fall on AB' the

perpendicular JBP. Then, using the notation of § 38, we
have

sin. BAP == sin. (M— N) =^ — |7 A B h
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Cosine of the sum of two angles.

The triangles B'AC and BB'P are similar, because they

are right-angled, and the angles at B' are vertical and equal.

Whence

AB 1
: BB' — AC: BP,

or

h' : a — a1 = b : x
;

whence
ab — a'b

X = A'"'
and

sin.
, ,. _ mr% x « b — ba'
(*~^=;A= ft -

=
p'
—
TV

a b b a!

and by substitution,

sin. (M— N) = sin. M cos. iV— cos. M sin. iV. (27)

40. Problem. To find the cosine of the sum of two

angles.

Solution. Making use of (fig. 9), with the notation of § 38,

and also the following

!/ = AP,z=PB>;
we have

co,(^ + iV)=^|=f-
But

y = AB' — PB< =zh' — z.

3*
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Cosine of the sum of two angles.

The similar triangles BPB' and B'AC, give the propor-

tion

AB' : BB' sb BC . B'P
}

h 1

: a -f- a' = a1

: z;

whence
« a' + a' 2

* =—¥~
;

and

y — h' — zzzzh'
j±

_ &/2 __ a/2
rt ^~~

^
"

But, from the right triangle AB'C,

h' 2 — a' 2 ss (4JB») 2 — (^'C) 2 =b (4C) 2 bb & 2 ;

whence

and

y
_ b 2

h>

« «'

n + iV) =.y
' h

b 2 — ad
hh'

_ h2

~hh'
— aa!W

b

~

h

b a a'

whence by substitution,

cos. (M+ N) =z cos. M. cos. iV— sin. M. sin. JV. (28)

41. Problem. To find the cosine of the difference of

tioo angles.
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Cosine of the difference of two angles.

Solution. Making use of (fig. 10.) with the notation of the

preceding section, we have

cos. BAB' == cos. (M— N) = ^-= = f.v
' AB h

But y — AB' + PB' = h' + ft

The similar triangles BB'P and BAC give the proportion

.4J3' : BB' — B'C : J3P,

or h' : a — d = d : z ;

whence

and

a d — a' 2

_h'2 — a'2 + ad
h'

But h'2 — a12 = b 2 .

Hence
b 2 -f- ad

and cos.

<*T?
(H=^
6 2 , aa'

b b a d

or, by substitution,

cos. (if— N) = cos. if cos. iV+ sin. if sin. iV. (29)
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Sum and difference of sines and cosines.

42. Corollary. The similarity, in all but the signs, of the

formulas (26) and (27) is such, that they may both be written

in the same form, as follows,

sin. (Jf dc N) = sin. M cos. N =b cos. M sin. N. (30)

in which the upper signs correspond with each other, and also

the lower ones.

In the same way, by the comparison of (28) and (29), we

are led to the form

cos. (Jf dc N) =s cos. Jf. cos. N ^F sin. Jf. sin. N, (31)

in which the upper signs correspond with each other, and also

the lower ones.

43. Corollary. The sum of the equations (26) and (27) is

sin. (Jf+ N) + sin. (M— N) = 2 sin. 31 cos. N. (32)

Their difference is

sin. (Jf+ N) — sin. (Jf— N) = 2 cos. M sin. N. (33)

44. Corollary. The sum of (28) and (29) is

cos. (Jf+ N) + cos. (Jf— N) = 2 cos. Jf cos. iV. (34)

Their difference is

cos. (Jf— N) — cos. (Jf+ 2V) = 2 sin. Jf sin. JV. (35)

45. Corollary. If, in (32-25), we make

M+N= A, andM—N=:B;
that is,

3r=i(A + B), N = i (A — B) ;

they become, as follows,
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Sum and difference of sines and cosines.

sin. A + sin. B = 2 sin. £ (A + #) cos. J (^L — JB) (36)

sin. A — sin. JB = 2 cos. £ (it -f B) sin. £ (4 — B) (37)

cos. ^4 + cos. B = 2 cos. £ (4 + JB) cos. | (.4 — J3) (38)

cos. B — cos. A =2 sin. J (4 + 5) sin. | (4 — jB). (39)

46. Corollary. The quotient, obtained by dividing (36) by

(37), is

sin. A + sin. B __ sin. £ (A -{- B) cos. ± (A — B)
sin. ^4 — sin. B cos. ± (A -\- B) sin. £ (A — B)'

Reducing the second member by means of equations (6), (7),

(8), we have

sin. A 4- sin. B «-«-*»* , - «
sTnTZ^smTl* * tang

' * (^ + *) COtan
' i(A ~ B

)

j tang.^+#) = cotan. j. (.4 —_2J)

tang. £ (4 — #) cotan. $ (A + £)' * '

47. Corollary. The quotient of (39) divided by (38) is, by

reduction,

cos. B — cos. A .j ,\ \
' _

% „ ^ • •

=
tang.^+ I?) __ tang.j(il—g
cotan.£(A—B) cot*n.£(A+

B'
{

'

48. Corollary. Putting in (26) and (28), M and iV both

equal to A
i
we obtain

sin. 2 A= sin. ^4 cos. A -\- sin.A cos. A = 2 sin. ^4 cos. A (42)

cos. 2 ^4 = cos. A cos. ^4 — sin. A sin. ^4

= (cos. A)* — (sin. A)*. (43)
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Sine &c. of double, and half of an angle.

49. Corollary. The sum of (43), and of the following

equation, which is the same as (9),

1 = (cos. A) 2
-f (sin. A) 2

,

is 1 + cos. 2 A = 2 (cos. A) 2
. (44)

Their difference is

1 — cos. 2 A = 2 (sin. A) 2
. (45)

50. Corollary. Making 2 A = C, or C= £ A, in (42-49),

we obtain

sin. C = 2 sin £ C cos. J C (46)

cos. C = (cos. J C) 2 — (sin. J C)* (47)

1 + cos. C = 2 (cos. J C)2 (48)

1 _ cos. C= 2 (sin. J C) 2
. (49)

The equations (48) and (49) give

cos. i C == V[i (1 + cos. C)] (50)

sin. J C = V[J(1 — cos. C)] (51)

-. ^ #/l COS. C\ ,__,

51. Problem. To find the tangent of the sum a?id of

the difference of two angles.

Solution. First. To find the tangent of the sum of two

angles, which we will suppose to be M and N
9
we have from

(*%

tmm , ™ s\n. (M+N)
tang. (M+ N) = W-T »n'-b v ~

' cos. (if+ iV)
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Tangent of sum and difference of angles.

Substituting (26) and (28),

sin. Mcos. N-\- cos.M sin. N
tang. (M-{~ N) =

cos. Mcos. N— sin. M sin. N'

Divide every term of both numerator and denominator of the

second member by cos. 31 cos. N
;

sin. M cos. N cos. ill" sin. N
I ht . 7%rv cos - M cos. iV " COS. M cos. N

tang. (M-h- N) = —
,& v

' ' cos. M cos. iV sin. if sin. N
cos. Jf cos. iV cos. M cos. iV

sin. M sin. iV

_ cos. M ' cos. iV
" ~

sin. M sin. iV'

cos. iH ' cos. iV

which, reduced by means of (7), becomes

mr \ 7»rv tang. Jf 4- tang. iV
tang. (Jf+ 2V) = -^—t-l-. (68)

Secondly. To find the tangent of the difference of M and
N, since by (7)

tang. (Jf-jy) = 8in
-
<*-*

[)
v

' cos. (M— JV)
9

a bare inspection of (30) and (31) shows that we have only
to change the signs, which connect the terms in the value of
tang. (M+ N) to obtain that of tang. (M— N). This change,
being made in (53), produces

•tang. (M- N) = .

**ng. if- tang. *T
S V ;

1 + tang.M tang. JV l >
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Tangent and cotangent of double an angle.

52. Corollary, As the cotangent is merely the reciprocal of

the tangent, we have, by inverting the fractions, from (53) and

(54),

cotan. (M+N) = i#-r~: ^-*r, (55)v
'

' tang. M -f- tang. N ' v '

1 + tan£- ^"tano*. N ,
"

cotan. (M—N)z= —X—=1 2—. (56)v
t tang. JIT— tang. N v '

53. Corollary. Make M= X = A, in (53) and (55).

They become

_ . 2 tang. A ,^ v

cotan^^ 1 -^"^.
(58)

2 tang, vl
v

'
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Sine, &c. of 0° and 90°.

CHAPTER V.

VALUES OF THE SINES, COSINES, TANGENTS, COTANGENTS,

SECANTS, AND COSECANTS OF CERTAIN ANGLES.

54. Problem. To find the sine, fyc. of0° and 90°.

Solution. Supposing M = N, in (27) and (29), we have

sin. (M—M) = sin. 0° == sin.Mcos.M— cos. iJfsin.M
cos. (M—M) = cos.0° — (cos. M) 2 + (s'm.M) 2

;

whence, by (9), and the consideration that 0° and 90° are

complements of each other,

sin. 0° — cos. 90° = (59)

cos. 0° = sin. 90° = 1. (60)

From (6) and (7), we have

tang. 0° sa cotan. 90° = Sm
'
°
no = ° = 0, (61

)

cos.
* v y

cotan. 0° = tang. 90° = —-—
b
= 4- = oo (62)

tang. x
'

sec. 0° = cosec. 90° = — = 4. = I (63)
cos.

cosec. 0° = sec. 90° = -—-* = i = oo. (64)
sm. u
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Sine, &c. of 180° and 270".

55. Problem. To find the sine, $*c. of 180°.

Solution. Make A == 90°, in (42) and (43), they become,

by means of (59) and (60),

sin. 180° = 2 sin. 90° cos. 90° = (65)

cos. 180° === (cos. 90°)2 — (sin. 90°)2 = — 1. (66)

Hence from (6) and (7),

n 1ftO° n = (67)

= — oo (68)

= - 1 (69)

tang. TSOo _ sin. 180°
180 ~ cos. 180° — 1

cotan. 180o = cos. 180'

sin. 180°

— 1

sec. 180° — i

~~
cos. 180° — i

cosec. 180° -

Sin
'

18°° = IT = (70)

56. Problem. To find the sine, Sfc. of 270°.

Solution. Make M == 180° and N = 90° in (26) and (28).

They become, by means of (59, 60, 6o
} 66),

sin. 270° = sin. 180° cos. 90°+cos. 180° sin. 90°=— 1 (71)

cos. 270° = cos. 180° cos. 90° — sin. 180° sin. 90° = 0. (72)

Hence, from (6) and (7),

_ sin. 270° — I
-

tang - 270 =
c^27(F

==
-(r

= ~ w (73)

«^o cos. 270°
COtan

"

27° = »1F = —1 = °
<
74

>
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Sine, &c. of 360° and 45°.

:
.»o - 2w =s^W=*=- <

75
>

57. Problem. To find the sine, fyc. of 360°.

Solution. Make A = 180° in (42) and (43) ; and they be-

come by (65, 66, 59, 60)

sin. 3G0° = = sin. 0° (77)

cos. 360° cs= 1 = cos. 0°. (78)

Hence the sine, fyc. of 360° are the same as those of0°.

58. Problem. To find the sine, fyc. of 45°.

Solution. Make C = 90° in (50) and (51). They become,

by means of (59),

cos. 45° = V [J (1 + cos. 90°)] z=z «/i (79)

sin. 45° — s/ [J (1 — cos. 90°)] = +/i = cos. 45°. (80)

Hence, from (6) and (7),

tang. 45> ==" = 1 (81)
cos. 45 v

'

cotan. 45° = -_ = 1 = tang. 45° (82)
tang. 45 to v /

sec. 45° = X— = -±--^2 (83)
cos. 45 \/ £

v '

cosec. 45 = -r—

-

- = —-- = s/2 = sec. 45°. (84)
sin. 45° s/ £

v
'
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Sine, &c. of 30°, 60^, and the supplement.

59. Problem. To find the sine, fyc. of 30° and 60°.

Solution. Make A = 30° in (42). It becomes, from the

consideration that 30° and 60° are complements of each

other,

sin. 60° = cos. 30° =- 2 sin. 30° cos. 30°.

Dividing by cos. 30°, we have

1 = 2 sin. 30°,

or sin. 30° = J = cos. 60° (85)

whence, from (6), (7), and (10),

cos. 30° = sin. 60° =± s/ (1 — \) = \ \/3 (86)

tang. 30° =£ cotan. 60° == j-^r- = ^- = Vi (87)

cotan. 30° = tang. 60° =z -j— = \/3 (88)

1 2
sec. 30° = cosec. 60° = -—— = -7-- (89)

^ V o \/ o

cosec. 30° == sec. 60° = - = 2. (90)

60. Problem. To find the sine, Sfc. of the supplement

of an angle.

Solution. Make M = 180° in (27) and (29). They become,

by means of (65) and (66),

sin. (180° — 2V}== sin. 180° cos. N— cos. 180° sin. N
= sin. iV (91)

cos. (180° — N)z=z cos. 180° cos. JY+ sin. 180° sin. iV

== — cos. JV (92)
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Sine, <&c. of obtuse angle.

whence, from (6) and (7),

tang. (180° — N) = — tang. N (93)

cotan. (180° — N) = — cotan. N (94)

sec. (180° — N) — — sec. N (95)

cosec. (180° — N) = cosec. N; (96)

that is, the sine and cosecant of the supplement of an

angle are the same with those of the angle itself and

the cosine, tangent, cotangent, and secant of the supple-

ment are the negative of those of the angle.

61. Corollary. Since, when an angle is acute its

supplement is obtuse, it follows from the preceding

proposition, that the sine and cosecant of an obtuse

angle are positive, while its cosine, tangent, cotangent,

and secant are negative.

This proposition must be carefully borne in mind in using

the trigonometric tables, as it affords the means of discrimi-

nating between the two angles which are given in B. Table

XXVII, and of deciding which of these two angles is the

required one.

62. Corollary. The preceding corollary might also have

been obtained from (26) and (28). For by making M— 90°,

we have by (59) and (60)

sin, (90° + N) = cos. N (97)

cos. (90° + N) = — sin. N\ (98)

whence, by (6) and (7),

tang. (90° + N) = — cotan. N (99)

4*
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Sine, &c. of negative angle.

cotan. (90° + N) = — tang. N (100)

sec. (90° + N) = — cosec. iV (101)

cosec. (90° + N) = sec. iV; (102)

that is, the sine and cosecant of an angle, which exceeds

90°, are equal to the cosine and secant of its excess

above 90°
7
while its cosine, tangent, cotangent, and se-

cant are equal to the negative of the sine, cotangent,

tangent, and cosecant of this excess.

63. Problem. To find the sine, &c. of a negative

angle.

Solution, Make N = 0° in (27) and (29). They become,

by means of (59) and (60),

sin. ( 11 N) = — sin. N (103)

cos. (-N) —cos.N (104)

whence, from (6) and (7),

tang. ( — N) — — tang. N (105)

cotan. (
—- N) = — cotan. N (106)

sec. ( — N) = sec. N (107)

cosec. ( — N) — — cosec. N; (108)

so that the cosine and secant of the negative of an

angle are the same with those of the angle itself ; and

the sine, tangent, cotangent, arid cosecant of the nega-

tive of the angle are the negative of those of the

angle.
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Sine, &c. of an angle greater than 180°.

64. Problem, To find the sine, Sfc. of an angle

lohich exceeds 180°.

Solution. Make M — 180° in (26) and (28). They be-

come, by means of (65) and (66),

sin. (180° + N) = — sin. N (109)

cos. (180° + N) =z — cos. N (110)

whence, from (6) and (7),

tang. (180° + N) = tang. N (111)

cotan. (180° + N) = cotan. N (112)

sec. (180° + N) = — sec. N (113)

cosec. (180° + N) = — cosec. 2V; (114)

that is, the tangent and cotangent of an angle, which

exceeds 180°, are equal to those of its excess above 180°

;

and the sine, cosine, secant, and cosecant of this angle

are the negative of those of its excess.

65. Corollary. If the excess of the angle above 180°

is less than 90°, the angle is contained between 180°

and 270° ; so that the tangent and cotangent of an

angle which exceeds 180°, and is less than 270°, are

positive ; while its sine, cosine, secant, and cosecant are

negative.

66. Corollary* If the excess of the angle above 180°

is greater than 90° and less than 180°, the angle is

contained between 270° and 360°; so that, by § 64 and

61, the cosine and secant of an angle, which exceeds
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270° and is less than 360°, is positive ; while its sine,

tangent, cotangent, and cosecant are negative.

67. Corollary. The results of the two preceding corollaries

might have been obtained from (27) and (29). For by mak-

ing M= 360°, we have, by § 57,

sin. (360° — N) = — sin. N (115)

cos. (360° — N)— cos. N (116)

whence, by (6) and (7),

tang. (360° — N) = — tang. N (117)

cotan.(360° — N) = — cotan. N (118)

sec. (360° — N)=z sec. N (119)

cosec. (360° — N) = — cosec. N (120)

that is, the cosine and secant of an angle are the same

with those of the remainder after subtracting the angle

from 360° ; while its sine, tangent, cotangent, and co-

secant are the negative of those of this remainder*

68. Problem. To find the sine, fyc. of an angle which

exceeds 360°.

Solution. Make M= 360° in (26) and (28;. They be-

come, by means of (77) and (78),

sin. (360° -f N) = sin. N (121)

cos. (360° + N) = cos. JY (122)

that is, the sine, fyc. of an angle which exceeds 360°

are equal to those of its excess above 360°.
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Increase of sine, &c. of an acute angle.

69. Theorem. The sine, tangent, and secant of an

acute angle increase with the increase of the angle

;

the cosine, cotangent, and cosecant decrease.

Proof. I. The excess of the sine of M -|- m over the sine

of M is, by (13), equal to sin. m cos. M
}
which is a positive

quantity when 31 is acute ; and, therefore, the sine of the acute

angle increases with the increase of the angle.

II. The excess of cos. M over cos. (M -{- m) is, by (15),

equal to sin. m sin. M, which is a positive quantity ; and,

therefore, the cosine of the acute angle decreases with the

increase of the angle.

III. The tangent of an angle is, by (7), the quotient of its

sine divided by its cosine. It is, therefore, a fraction whose

numerator increases with the increase of the angle, while its

denominator decreases. Either of these changes in the terms

of the fraction would increase its value ; and, therefore, the

tangent of an acute angle increases with the increase of the

angle.

IV. The cosecant, secant, and cotangent of an angle are,

by (6), the respective reciprocals of the sine, cosine, and tan-

gent. But the reciprocal of a quantity increases with the

decrease of the quantity, and the reverse. It follows, then,

from the preceding demonstrations, that its secant increases

with the increase of the acute angle, while its cosecant and

cotangent decrease.

70. Theorem. The absolute values (neglecting their

signs) of the sine, tangent, and secant of an obtuse
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Increase of sine, &c. of obtuse angle.

angle decrease with the increase of the angle; while

those of the cosine, cotangent, and cosecant increase.

Proof. The supplement of an obtuse angle is an acute

angle, of which the absolute values of the sine, &,c. are, by §
60, the same as those of the angle itself. But this acute angle

decreases with the increase of the obtuse angle, and at the

same time its sine, tangent, and secant decrease, while its

cosine, cotangent, and cosecant increase.
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Sides proportional to sines of opposite angles.

CHAPTER VI.

OBLIQUE TRIANGLES.

71. Theorem. The sides of a triangle are directly

proportional to the sines of the opposite angles. [B. p. 13]

Proof. In the triangle ABC (figs. 2 and 3), denote the

sides opposite the angles A, B, C, respectively, by the letters

a, b
y c. We are to prove that

sin. A : sin. B : sin. C — a :b : c. (123)

From the vertex B, let fall on the opposite side the perpendic-

ular BP, which we will denote by the letter p. Then, in the

triangle BAP, we have by (1)

Sm ' A = AB :

=-c'

or p =zc sin. A. 0^4)

Also, in the triangle BPC, we have, by (1) and (91), and

from the consideration that BCP is the angle C (fig. 2.), and

its supplement (fig. 3.),

BCP = BP p
~~ BC~ a'

or p =za sin. C. (125)

Comparing (124) and (125), we have

c sin. A = a sin. C,



48 PLANE TRIGONOMETRY. [CH. VI.

A side and two angles given.

which may be converted into the following proportion

sin. A : sin. C z= a : c.

In the same way, it may be proved that

sin. A : sin. B — a : b ;

and these two proportions may be written in one as in (123).

72. Problem. To solve a triangle when one of its

sides and two of its angles are known. [B. p. 41.]

Solution. First. The third angle may be found by subtract-

ing the sum of the two given angles from 180°.

Secondly. To find either of the other sides, we have only to

make use of a proportion, derived from § 71. As the sine of

the angle opposite the given side is to the sine of the angle

opposite the required side, so is the given side to the required

side. Thus, if a (fig. 1.) were the given and b the required

side, we should have the proportion

sin. A : sin. B — a : b
;

whence by (6)

a sin. B . _ «-^l»
b — —:

-- ±= a sin. B cosec. A. (126)
sin. A x '

73. Examples.

1. Given one side of a triangle equal to 22.791, and the

adjacent angles equal to 32° 41/ and 47° 54' ; to solve the

triangle.

Solution. The other angle •= 180° — (32° 41 7 + 47° 54')

= 99° 257
.
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Given two sides and an angle opposite one of them.

By (126)

99° 25' cosec. 10.00589 10.00589

32° 41' sin. 9.73239 47° 54' sin. 9.87039

22.791 1.35776 1.35776

12.475 *1.09604; 17.141 *i.23404.

Ans. The other angle == 99° 25'

The other sides = {

12.475
17.141

2. Given one side of a triangle equal to 327.06, and the

adjacent angles equal to 154° 22' and 17° 35' ; to solve the

triangle.

Ans. The other angle = 8° 3'

The other sides -{ 1010.4

705.5

74. Problem. To solve a triangle when two of its

sides and an angle opposite one of the given sides are

known. [B. p. 42.]

Solution. First. The angle opposite the other given side is

found by the proportion of § 71. As the side opposite the

given angle is to the other given side, so is the sine of the

given angle to the sine of the required angle. Thus, if (fig. 1.)

a and b are the given sides and A the given angle, the angle

B is found, by the proportion

* 20 is subtracted from each of these characteristics, because the

two sines and cosecant were taken from the tables without any di-

minution, as required by § 30.

5
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Given two sides and an angle opposite one of them.

a \b =. sin. A : sin. B

;

whence

S\n.B=
bsm

a

A
. (127)

Secondly. The third angle is found by subtracting the sum

of the two known angles from 180°.

Thirdly. The third side is found by the proportion. As the

sine of the given angle is to the sine of the angle opposite the

required side, so is the side opposite the given angle to the

required side. That is, in the present case,

sin. A : sin. C = a : c
;

whence

,
— a sin. c cosec. A. (128)

sin. A

75. Scholium. Two angles are given in the tables corre-

sponding to the same sine, which are supplements of each

other, one being acute and the other obtuse. Two values of

B (127) are then given in the tables, and both these values

may be possible, when the given value of b is greater than that

of a> and the given value of A is less than 90°
; for, in this

case, there may be two triangles, ABC (fig. 11.) and AB'C,

which satisfy the data.

76. Scholium. The problem is impossible, when the given

value of b is greater than that of a, and the given value of A
is obtuse. For the greatest side of an obtuse-angled triangle

must always be opposite the obtuse angle.

77. Scholium. The problem is impossible, when the given

value of b is so much greater than that of a, that we have
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Given two sides and an angte opposite one of them.

b sin. A > a;

for, in this case, the given value of a is less than that of the

perpendicular CP (fig. 11.), from C upon AP.

78. Scholium. The obtuse value of B does not satisfy the

problem, when b is less than a; for the obtuse angle of a

triangle cannot be opposite a smaller side. In this case,

therefore, the problem admits of only one solution.

79. Examples.

1. Given two sides of a triangle equal to 77.245 and 92.341,

and the angle opposite the first side equal to 55° 28' 12", to

solve the triangle.

Solution. Making

b — 92-341, a = 77-245, A = 55° 28' 12",

we have, by (127),

a = 77-245 (ar. co.) 8-11213

b = 92-341 1-96540

A = 55° 28 ; 12" sin. 991584

B = 80 ; 1' or = 99° 59' sin. 9-99337

A + B = 135° 29' 12" or == 155° 27 ; 12"

C = 44° 30' 48" or = 24° 32' 48"

Then, by (128),
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Given two sides and an angle opposite one of them.

a = 77-245 1-88787 1-88787

C= 44° 30' 48" sin. 9-84576 or === 24° 32' 48" sin. 961850

A == 55°28 12"cosec. 1008416 1008416

C= 65-734 1-81779 or = 38 952 1-59053

Ans. The third side = 65-734 or = 38-952

{80° V i 99° 59'

44° 30' 48"
ov —

{ 24° 32' 48"

2. Given two sides of a triangle equal to 77-245 and 92-341,

and the angle opposite the second side equal to 55° 28' 12"
;

to solve the triangle.

Ans. The third side = 110-7

T ,
4

, , ( 43° 3344"
The other angles = j g()0 5g , 4„

3. Given two sides of a triangle equal to 40 and 50, and the

angle opposite the first side equal to 45°, to solve the tri-

angle.

Ans. The third side = 54.061 or = 16-65

{62° 7' (

72° W or =
i

117° 53'

17° r

4. Given two sides of a triangle equal to 77-245 and 92*341,

and the angle opposite the second side equal to 124° 31' 48",

to solve the triangle.

Ans. The third side == 23-129

43° 33' 44"
The other angles = \

i i° ^4/ 28"
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Ratio of the sum of the two sides to their difference.

5. Given two sides of a triangle equal to 77*245 and 92*341,

and the angle opposite the first side equal to 124° 31' 48", to

solve the triangle.

Ans. The question is impossible.

6. Given two sides of a triangle equal to 75*486 and 92*341,

and the angle opposite the first side equal to 55° 28' 12", to

solve the triangle.

Ans. The question is impossible.

80. Theorem. The sum of two sides of a triangle

is to their difference, as the- tangent of half the sum

of the opposite angles is to the tangent of half their

difference. [B. p. 13.]

Proof. We have (fig. 1.)

a : b = sin. A : sin. B ;

whence, by the theory of proportions,

a -j- b : a — b = sin. A -f- sin. B : sin. A — sin. B
t

which, expressed fractionally, is

a -f- b sin. A ~(- sin. B
a — b ' sin. A — sin. B

But, by (40),

sin. A -f- sin. B tang. J (A -f- B)
sin. A — sin. B tang. % (A — B) '

whence

a + b __ tang. J (A + B)
a — b tang, i (A — B)
5*

(129)
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Given two sides and the included angle.

or

a + b : a — 6 = tang. J (4 + B) : tang. £ (^4 — B).

81. Problem. To solve [a triangle when two of its

sides and the included angle are given. [B. p. 43.]

Solution. Let the two sides a and b (fig. 1.) be given, and

the included angle C, to solve the triangle.

First. To find the other two angles. Subtract the given

angle C from 180°, and the remainder is the sum of A and

B, for the sum of the three angles of a triangle is 180°, that

is,

A -f B = 180° — C,

and

£ (A + B) — 90° — £ C = complement of J C.

The difference of A and 2? is then found by (129)

a + 6:fl — b = tang. J (4 -f jB) : tang. % (A — B).

But we have

tang. J (^4 -|- B) z= cotan. J C;

whence

tang. J (.4—JB) = ^=|tang4(4+B)=^cotan.iG(180)

The greater angle, which must be opposite the greater side,

is then found by adding their half sum to their half difference
;

and the smaller angle by subtracting the half difference from

the half sum.

Secondly. The third side is found by the proportion

sin. A : sin. C =z a : c
;
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Given two sides and the included angle.

whence

a sin. C
sin. A

82. Examples.

1. Given two sides of a triangle equal to 99*341 and 1.234,

and their included angle equal to 169° 58', to solve the tri-

angle.

Solution. Making a == 99.341, b = 1.234 ; and

C =z 169° 58', J- C= 84° 59'

;

we have, by (130),

a + b — 100.575 (ar. co.) 7.99751

a — b — 98.107 ^1.99170

i (A + B) = 5° 1' tang. 8.94340

£ (A — B) = 4° 53' 39" tang. 8.93261

^4=9° 54' 39"

B =z 0° 7 / 21'

a = 99.341 1.99712

C— 169° 58' sin. 9.24110

A = 9° 54' 39" cosec. 10.76416

c = 100.55 2.00238

Ans. The third side =: 100.55

T , ..
, f

9° 54' 39'
The other angles z=

|
QO ^ 21 „
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Segments of base made by perpendicular from opposite vertex.

2. Given two sides of a triangle equal to 0.121 and 5.421

and the included angle equal to 1° 2' ; to solve the triangle.

Ans. The other side = 5.294

T , ,. . i 178° 56' 35"
lhe other angles = t ~ 1/05//

83. Theorem. One side of a triangle is to the sum

of the other two, as their difference is to the difference

of the segments of the first side made by a perpendicu-

lar from the opposite vertex, if the perpendicular fall

within the triangle ; or to the sum of the distances of

the extremities of the base from the foot of the perpen-

dicular, if it fall without the triangle. [B. p. 14.]

Proof Let AB (figs. 12 and 13) be the side of triangle

ABC on which the perpendicular is let fall, and BP the per-

pendicular.

From 5asa centre with a radius equal to BC, the shorter

of the other two sides, describe the circumference CC E'E.

Produce AB to E1 and ACto*C, if necessary.

Then, since AC and AB are secants, we have,

AC AE — AE : AC.

But

and

AE' = AB + BE —AB + BC

AE = AB — BE = AB — BC

(fig. 12.) AC = AP — PC = AP — PC
(fig. 13.) AC = AP + PC — AP + PC
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Given the three sides.

whence

(fig. 12.) AC : AB + BC = AB — BC: AP — PC

(fig. 13.) AC : AB + BC = AB — BC : AP + PC

84. Problem. To solve a triangle when its three

sides are given. [B. p. 43.]

Solution. On the side b (figs. 2 and 3.) let fall the perpen-

dicular BP.

Then, by § 83,

(fig. 2.) b : c + a = c — a : PA — PC
(fig. 3.) b : c + a = c — a : P^l + PC.

These proportions give the difference of the segments (fig. 2.),

or their sum (fig. 3.). Then, adding the half difference to the

half sum, we obtain the larger segment corresponding to the

larger of the two sides a and c. And, subtracting the half

difference from the half sum,we obtain the smaller segment.

Then, in triangles BCP and ABP, we have, by (4) and

(92),

A
AP

cos. A = ;

c

PC
and (fig. 2.) cos. C s=

,

P C
(fig. 3.) cos. C = — cos. BCP — .

The third angle B is found by subtracting the sum of A
and C from 180°.

85. Corollary. From the preceding section, we have
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Given the three sides.

(fig. 2.) pa-pc= (« + «H«-g) = £lzi_«f

(fig. 3.) pa + pc = (c + ")(c-zA = £l^_«!

which, added to

(% 2.) PA + PC:-AC = b

(fig. 3.) PA — PC:-AC:- b

gives

2Pi = c 2 — a*
- + 6 = b 2 + c 2 — a2

b b

Hence

PA= b2 + c2 -

26
and

. PA &2 + c2_ a2
cos. A = — = -^_ (131)

86. Corollary. If (131) is cleared from fractions it becomes

by transposition

a2 — b 2 + c 2 — 2 6c cos. ^4. (132)

87. Corollary. Add unity to both sides of (131) and we

have

1 + cos. it *^mW- + 1 - 267

-
¥b~c

(133)

Since the numerator of (133) is the difference of two

squares, it may be separated into two factors, and we have
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Given the three sides.

14. cosi _(H c + a)(b + c - a)
1 + cos. A _ 2^ •

Now, representing half the sura of the three sides of a tri-

angle by 5, we have

2 sz= a + b + c, (134)

and

2s-2a = 2(5-«)=:fl + 6 +c—2 a— b +c—a. (135)

If we substitute these values in the above equation, it be-

comes

ii a
4 s (s — a) 2s (s — a,

1 + cos. A = — - — . (136)
2 6c be

But, by (48),

1 + cos. A = 2 (cos. %A) 2
.

Hence

or (cos.J^)2=iiip^ (137)
be

cos.^=v( S(5 ~ a)

)>
(138)

which corresponds to proposition LXI. of B. p. 14.

In the same way, we have

cos.iB = */(tilzd)\ (139)

coM<w(^). (140)
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Given the three sides.

88. Corollary. Subtract both sides of (131) from unity, and

we have

V*-\-&—a2 _ a2 +2bc— b 2 — c2

cos. A z=t 1
26c 26c

a2 — (b—-c) 2

26~c"
' (141)

Since the numerator of (141) is the difference of two

squares, it may be separated into two factors, as follows,

{a— b + c)(a-\-b — c)
1 — cos. A = * —Jt—! -•

26 c

But from (134)

25— 2 6 = 2 (s— 6) = a-J-6+ c— 2 6 = a— 6 + c (142)

2s— 2c = 2 (s— c ) = a+ b+ c— 2c = a+b— c. (143)

If we substitute these values in the above equations, it be-

comes

1
4(s— b)(s— c) 2(5— 6) (s— c)

t
.

1— cos. A = —- —f-- —'- == —

^

^-i '-. (144)
2 6c 6 c

But, by (49),

1 — cos. ^4 = 2 (sin. \ A) 2
.

Hence, by reduction,

sin.M = v(
(S - 6)

6

(;- ^). <
145

>

In the same way, we have

si„.* B = v(^=4f-^) (146)

riMC=V(^ a^'-* )

). ,(147)
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Given the three sides.

89. Corollary. The quotients of (145, 146, and 147), di-

vided by (138, 139, and 140), are by (7)

m»»b = v( (

't(;'.1V) <m

90. The product of (136) by (144) is

i /™« A\2
±s(s— a)(s— b)(s— c)

1 —(cos. A) 2 = p— .

But from (10)

1 — (cos. A) 2 = (sin. A) 2
.

Hence

(sin . A)2 = 4«(.-«)(.-t)(«-^

or

1:^ W[s(s— a) (5— 6) (5— C)]

b c

91. Scholium. The problem would be impossible, if the given

value of either side exceeded the sum of the other two.
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Given the three sides.

92. Examples.

1. Given the three sides of a triangle equal to 12.348,

13.561, 14.091 ; to solve the triangle

Solution* First Method.

Make (fig. 2.) a — 12.348 b — 13.561

c L= 14.091.

Then by § 84

b = 13.561 (ar. co.) 8.86771

c -j- a = 26.439 1.42224

c — a= 1.743 0.24130

PA—PC= 3.3982 0.53125

PA z=z 8.4796 0.92838

PC —5.0814 0.70598

c = 14.091 (ar. co.)8.85106

a = 12.348 (ar. co.) 8.90840

A = 53° 0' cos. 9.77944

C = 65° 42; cos. 9.61438

B sa 180° — (A + C)

= 180° — 118° 42' = 61° 18'
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Given the three sides.

Second Method.

By (138, 139, and 140),

a = 12.348 (ar. co.) 8.90840 (ar. co.) 8.90840

b a= 13.561 (ar. co.) 8.86771 (ar. co.) 8.86771

c = 14.091 (ar.co.)8.85l06(ar.co.)8.85106 -

1.30103s = 20.000

5-a=r7.652

s-6=6.439

5-cz=5.909

COS.

0.88377

2 19.90357

9.95179

1.30103

0.80882

1.30103

0.77151

19.86931 19.84865

9.93466 9.92433

A — 26° 30', £ B = 30° 39, £ C = 32° 51'

4 = 53° 0', JB = 61°18 /

, C=65°42/
.

.53° 0'

Arts. The angles

(53° 0'

= { 61° 18'

I 65° 42.

In the same way equations (145-147) would furnish a

third method, (148-150) a fourth method, and (151) a fifth

method.

2. Given the three sides of a triangle equal to 17.856,

13.349, and 11.111 ; to solve the triangle.

.
93° 19' 16"

Ans. The angles

( 93" 19' lb"

= { 48° 16' 24"

( 38° 24' 20".
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NAVIGATION AND SURVEYING.

CHAPTER I.

PLANE SAILING.

1. The daily revolution of the earth is performed

around a straight line, passing through its centre, which

is called the earth' s axis.

The extremities of this axis on the surface of the

earth are the terrestrial poles, one being the north pole,

and the other the south pole.

The section of the earth, made by a plane passing

through its centre and perpendicular to its axis, is the

terrestrial equator, [B. p. 48.]

2. Parallels of latitude are the circumferences of

small circles, the planes of which are parallel to the

equator.

3. Meridians are the semicircumferences of great cir-

cles, which pass from one pole to the other.

The first meridian is one arbitrarily assumed, to

which all others are referred. In most countries, that
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Latitude. Longitude.

has been taken as the first meridian which passes

through the capital of the country. But, in the United

States, we have usually adhered to the English custom,

and we consider the meridian, which passes through

the Observatory of Greenwich, as the first meridian.

[B. p. 48.]

4. The latitude of a place is its angular distance

from the equator, the vertex of the angle being at the

centre of the earth ; or, it is the arc of the meridian,

passing through the place, which is comprehended be-

tween the place and the equator. [B. p. 48.]

Latitude is reckoned north and south of the equator from

0° to 90°.

5. The difference of latitude of two places is the

angular distance between the parallels of latitude in

which they are respectively situated, the vertex of the

angle being at the centre of the earth ; or it is the arc

of a meridian which is comprehended between the par-

allels of latitude. [B. p. 52.]

The difference of latitude of two places is equal to

the difference of their latitudes, if they are on the same
side of the equator ; and to the sum of their latitudes,

if they are on opposite sides of the equator. [B. p. 50.]

6. The longitude of a place is the angle made by

the plane of the first meridian with the plane of the

meridian passing through the place ; or it is the arc of

the equator comprehended between these two merid-

ians. [B. p. 48.]
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Distance. Course. Departure.

Longitude is reckoned East and West of the first meridian

from0° to 180°.

7. The difference of longitude of two places is the

angle contained between the planes of the meridians

passing through the two places; or it is the arc of the

equator comprehended between these two meridians.

The difference of longitude of two places is equal

to the difference of their longitudes, if they are on the

same side of the first meridian ; and to the sum of their

longitudes, if they are on opposite sides of the first me-

ridian, unless their sum be greater than 180°
; in which

case the sum must be subtracted from 360° to give the

difference of longitude, [B. p. 50.

J

8. The distance between two places in Navigation

is the portion of a curve which would be described

by a ship sailing from one place to the other in a path,

which crosses every meridian at the same angle.

[B. p. 52.]

9. The course of the ship, or the bearing of the twe

places from each other, is the angle which the ship's

path makes with the meridian. [B. p. 52.]

10. The departure of two places is the distance o

either from the meridian of the other, when they are

so near each other that the earth's surface may be con-

sidered as plane and its curvature neglected. But, if

the two places are at a great distance from each other,
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Point. Mariner's compass.

the distance is to be divided into small portions, and

the departure of the two places is the sum of the de-

partures corresponding to all these portions.

11. Instead of dividing the quadrant into 90 degrees,

navigators are in the habit of dividing it into eight

equal parts called points; and of subdividing the points

into halves and quarters. A point, therefore, is equal

to one eighth of 90°, or to 11° 15'. [B. p. 52.]

Names are given to the directions determined by the

different points, as in the diagram (fig. 14), which repre-

sents the face of the card of the Mariner's Compass.

The Mariner's Compass consists of this card, at-

tached to a magnetic needle, which has the property

of constantly pointing toward the north and thereby

determining the ship's course.

On page 53 of the Navigator a table is given of the angles

which every point of the compass makes with the meridian,

and on page 169, table XXV. the log., sines, &c. are given.

12. The object of Plane Sailing is to calculate the

Distance, Course or Bearing, Difference of Latitude and

Departure, when either two of them are known.

[B. p. 52.]

13. Problem. To find the difference of latitude and

departure^ when the distance and course are known.

[B. p. 54.]

Solution. First. When the distance is so small that the

curvature of the earth's surface may be neglected. Let A B
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Given distance and course.

(fig. 15.) be the distance. Draw through A the meridian AC,
and let fall on it the perpendicular BC. The angle A is the

course, AC is the difference of latitude, and BC is the depart-

ure. Then, by (17, and 18.)

Diff. of lat. = dist. X cos. course. 0^2)

Departure = dist. X sin. course. (153)

Secondly. When the distance is great, as A B (fig. 16),

then divide it into smaller portions, as A a, a b, b c, &c.

Through the points of division, draw the meridians AN, an,

bp, &c. Let fall the perpendiculars am, b n, cp, &c.

Then, as the course is every where the same, each of the

angles m A a, n a b, p b c, &c. is equal to the angle A, or the

course. Moreover, the distances, A m, a n, b p, &,c. are the

differences of latitude respectively of A and a, a and b, b and

c, &c. Also a m, b n, c p, &c. are the departures of the

points A and a, a and b, b and c, &,c. Therefore, as the

difference of latitude of A and B is evidently equal to the sum

of these partial differences of latitude ; and as the departure

of A and B is by § 10 equal to the sum of the partial depar-

tures, we have

Diff. of lat. = Am-\-an-\-bp-\- &c.

Departure = am-\-bn-{-cp-\- &c.

But the right triangles m A a, n ab,p b c, &c. give by (152,

and 153.)

A m — A a X cos. course, a m = A a X sin. course
;

a n = a b X cos. course, b n = a b X sin. course
;

b p = b c X cos. course, cp = b c X sin. course.

&c. &c.
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Given course and departure.

The sums of these equations give

Diff. of lat. = i?a-)-«n + &c + &c

= (Aa-\-ab-\-bc-\- &c.) X cos. course,

Departure = a m -\- b n -\- c p ~\- &c.

= (Aa-\-ab-{-bc-\- &c.) X sin. course.

But

Aa-\-ab-\-bc-\- &c. = AB = distance.

Hence,

Diff. of lat. = dist. X cos. course,

Departure = dist. X sin. course

;

precisely the same with (152) and (153).

This shows that the method of calculating the dif-

ference of latitude and departure is the same for all

distances, and that all the problems of Plane Sailing

may be solved by the right triangle (fig. 15.) [B. p. 52.]

A table of difference and latitude and departure are given in

pages 1-6, Tables I. and II. of the Navigator, which might

be calculated by (152 and 153.)

14. Problem. To find the distance and difference of

latitude, when the course and departure are known.

[B. p. 55.]

Solution. There are given (fig. 15.) the angle A and the

side B C. Hence, by (19, and 20),

Distance == departure X cosec. course. (154)

Diff. of lat. = departure X cotan. course. (*55)
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15. Problem. To find the distance and departure,

when the course and difference of latitude are known.

[B. p. 55.]

Solution. There are given (fig. 15.) the angle A and the

side AC. Then, by (21, and 22).

Distance = diff. of lat. X sec - course. (156*)

Departure = diff. of lat. X tang, course. (157)

16. Problem. To find the course and difference of

latitude, when the distance and departure are known.

[B. p. 57.]

Solution. There are given (fig. 15.) the hypothenuse AB
and the side EC. Then, by (23, and 25),

departure
sin. course z= —

-? , (15o)
distance

Diff. of lat. z= \/ [(dist.2) — (departure) 2
]. (159)

17. Problem. To find the course and departure, ivhen

the distance and difference of latitude are known.

[B. p. 56.]

Solution. There are given (fig. 15.) the hypothenuse AB
and the leg AC. Then, by (23 and 25),

diff of lat.
cos. course = —

, (160)
distance. '

Departure = s/ [(dist.) 2 _ (diff. of lat.) 2 ]. (161)

18. Problem. To find the course and distance, when

the departure and difference of latitude are known.

[B. p. 57.]

7
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Solution. There are given (fig. 15.) the legs AC and BC.
Then,

departure ,-tLL*
tang, course ^

5I
^___ (162)

Dist. = diff. of lat. X sec. course. (163)

19. Examples.

1. A ship sails from latitude 3° 45' S., upon a course

N. by E., a distance of 2345 miles ; to find the latitude at

which it arrives, and the departure which it makes.

Ans. Latitude — 34° 35' N.

Departure =z 458 miles.

2. A ship sails from latitude 62° 19' N., upon a course

W. N. W., till it makes a departure of 1000 miles ; to find the

latitude at which it arrives, and the distance sailed.

Ans. Latitude == 69° 13' N.

Distance = 1082 miles.

3. The bearing of Paris from Athens is N. 54° 56' W.

;

find the distance and departure of these two places from each

other.

Ans. Distance = 1135 miles.

Departure = 929 miles.

4. A ship sails from latitude 72° 3' S. a distance of

2000 miles, upon a course between the north and the west,

that is, northwesterly, until it makes a departure of 1000

miles ; find the latitude at which it arrives, and the course.
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Ans. Latitude = 43° IT S.

Course = N. 30° W.

5. The distance from New Orleans to Portland is 958 miles;

find the bearing and departure.

Ans. Bearing = N. 49° 24' E.

Departure as 1257 miles.

6. The departure of Boston from Canton is 8790 miles;

find the bearing and distance.

Ans. Bearing as N. 82° 31' E.

Distance = 8865 miles.
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Traverse.

CHAPTER II.

TRAVERSE SAILING.

20. A traverse is an irregular track made by a ship

when sailing on several different courses.

The object of Traverse Sailing is to reduce a trav-

erse to a single course, where the distances sailed are so

small that the earth's surface may be considered as a

plane. [B. p. 59.]

21. Problem. To reduce several successive tracks of

a ship to one ; that is, to find the single track, leading

to the place, which the ship leas actually reached, by

sailing on a traverse. [B. p. 59.]

Solution. Suppose the ship, to start from the point A (fig.

17.) and to sail, first from A to B, then from B to C, then

from C to JEJ, and lastly from E to F ; to find the bearing and

distance of F from A. Call the differences of latitude, cor-

responding to the 1st, 2d, 3d, and 4th tracks, the 1st, 2d, 3d,

and 4th differences of latitude ; and call the corresponding

departures the 1st, 2d, 3d, and 4th departures. Then we
need no demonstration to prove that,

Diff. of lat. of A and P= 1st diff. of lat. — 2d diff. of lat.

+ 3d diff. of lat. — 4th diff. &c.

;

or that the difference of latitude of A and F is found
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To reduce a traverse to a single course.

by taking the sum of the differences of latitude corre-

sponding to the northerly courses, and also the sum of

those corresponding to the southerly courses, and the

difference of these sums is the required difference of

latitude.

By neglecting the earth's curvature, we also have,

Dep. of A and F= 1st dep.— 2d dep. —3d dep. + 4th dep.

or the departure of A and F is found by taking the

sum of the departures corresponding to the easterly

courses, also the sum of those corresponding to the west-

erly courses ; and the difference of these sums is the

required departure.

Having thus found the difference of latitude and de-

parture of A and F, their distance and bearing are

found by <§> 18.

22. The calculations of traverse sailing are usually

put into a tabular form, as in the following example.

In the first column of the table are the numbers of

the courses
;
in the second and third columns are the

courses and distances ; in the fourth and fifth columns

are the differences of latitude, the column, headed N,

corresponding to the northerly courses, and that headed

S, to the southerly courses; in the sixth and seventh

columns are the departures, the column, headed E, cor-

responding to the easterly courses, and that, headed W
;

to the westerly courses. [B. p. 59.]

7*
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23. Examples.

1. A ship sails on several successive tracks, in the order

and with the courses and distances of the first three columns

of the following table ; find the bearing and distance of the

place at which the ship arrives, from that from which it

started.

No. Course. Dist. N. S. E. W.

1 N. N. E. 30 27.7 115
2 N. W. 80 56.6 56.6

3 West. 60 60.0

4 S. E. by S. 55 45.7 30.6

5 North. 43 43.0

6 S. by W. 152 149.1

194.8 42 1

29.7

Sum of col umns, 127.3 146.3

127.3 42.1

Diff. lat. = 67.5S.dep.=104.2W.

Dep. = 104.2 2.01787

Diff. of lat = 67.5 (ar. co.) 8.17070 1.82930

Bearing = 57° 4' tang. 0.18857 sec. 0.26467

Dist. = 124 1 2.09397

Ans. Bearing = S. 57° 4' W.

* Distance = 124.1 miles.

2. A ship sails on the following successive tracks, South 10

miles, W. S. W. 25 miles, S. W. 30 miles, and West 20 miles
;

it is bound to a port which is at a distance of 100 miles from

the place of starting, and its bearing is W. by N.
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Required the bearing and distance of the port to which the

ship is bound, from the place at which it has arrived.

Ans. Bearing =5 S. 51° 47' W.

Distance = 239 miles.
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Differences of longitude in parallel sailing.

CHAPTER III.

PARALLEL SAILING.

24. Parallel Sailing considers only the case where

the ship sails exactly east or west, and therefore re-

mains constantly on the same parallel of latitude. Its

object is to find the change in longitude corresponding

to the ship's track. [B. p. 63.]

25. Problem. To find the difference of longitude in

parallel sailing. [B. p. 65.]

Solution. Let AB (fig. 18.) be the distance sailed by the

ship on the parallel of latitude A B. As the course is exactly

east or west, the distance sailed must be itself equal to its de-

parture.

The latitude of the parallel is AD A' or A A 1
. The angle

AEB = A'D B 1

, or the arc A' B', is the difference of lon-

gitude. Denote the radius of the earth A'D = B'D = A D
by JR, and the radius of the parallel AE = BE by r ; also

the circumference of the earth by C, and that of the parallel

by c.

Since AB and A'B' correspond to the equal angles AEB
and A'D B\ they must be similar arcs, and give the propor-

tion,

AB :AB' = c : C,

or Dep. : diff. long. = c : G
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Difference of longitude.

But, as circumferences are proportional to their radii,

c : C=r :R.

Hence, leaving out the common ratio,

Dep. : cliff, long. = r : JR.

Putting the product of the extremes equal to that of the

means,

r. diff. of long. = R. departure.

But, in the triangle AD E, since

DAE=ADA= latitude,

we have, from (17),

r = R X cos. lat.

which, substituted in the above equation, gives, if the result is

divided by R,

Diff. long. X cos. lat. = departure. (1°*4)

Hence, by (8),

Diff. long, = ^R^™ = dep. X sec. lat. (165)
cos. lat.

r x
'

26. Corollary. Since the distance is the same as the depar-

ture in parallel sailing. The word distance may be substituted

for departure in (164) and (165).

27. Corollary. It appears, from (164) and (165), that

if a right triangle (fig. 18.) is constructed, the hypothe-

nuse of which is the difference of longitude, and one of

the acute angles the latitude, the leg adjacent to this

angle is the departure. All the cases of parallel sailing

may , then, be reduced to the solution of this triangle.
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Differences of places on the same parallel.

28. Problem. To find the distance between two places

which are upon the same parallel of latitude.

Solution. This problem is solved at once by (164).

29. The Table, p. 64, of the Navigator, which " shows for

every degree of latitude how many miles distant two meridians

are, whose difference of longitude is one degree," is readily

calculated by this problem.

30. Examples.

1. A ship sails from Boston 1000 miles exactly east ; find

the longitude at which it arrives.

Ans. Longitude sought = 51° 48' W.

2. Find the distance of Barcelona (Spain) from Nantucket

(Massachusetts).

Ans. Distance = 3252 miles.

3. Find the distance between two meridians, whose differ-

ence of longitude is one degree in the latitude of 45°.

Ans. Distance = 42.43 miles.
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Middle latitude.

CHAPTER IV.

MIDDLE LATITUDE SAILING.

31. The object of Middle Latitude Sailing is to give

an approximative method of calculating the difference

of longitude, when the difference of latitude is small.

[B. p. 66.]

32. Problem. To find the difference of longitude by

Middle Latitude Sailing, when the distance and course

are known, and also the latitude of either extremity of

the ship's track. [B. p. 71.]

Solution. The difference of latitude and departure are found

by (152) and (153),

Diff. lat. = dist. X cos. course

Departure = dist. X sin. course.

The difference of longitude may then be found by means of

(165). But there is a difficulty with regard to the latitude to

be used in (165); for, of the two extremities of the ship's

track, the latitude of one is smaller, while the latitude of the

other extremity is larger than the latitude of the rest of the

track. Navigators have evaded this difficulty by using the

Middle Latitude between the two, as sufficiently accurate,

when the difference of latitude is small. Now the middle lat-

itude is the arithmetical mean between the latitudes of the

extremities, so that we have,
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Middle lat. = J sum of the lats. of the extremities of the

track

;

(166)

and, by (165),

departure
DifF. long, b E-—— == dep. X sec. mid. lat. (167)&

cos. mid. lat.
'

or, by substituting (153),

DifF. long. = dist. X sin. course X sec. mid. lat. (168)

" This method of calculating the difference of longitude may

be rendered perfectly accurate by applying to the middle lat-

itude a correction," which is given in the Navigator, and the

method of computing, which will be explained in the suc-

ceeding chapter. [B. p. 76,]

33. By combining the triangle (fig. 16.) of Plane

sailing with that (fig. 18.) of Parallel sailing a triangle

(fig. 19.) is obtained, by which all the cases of Middle

Latitude sailing may be solved.

34. Problem. To find the distance and bearing of

two places from each other, when their latitudes and
longitudes are known. [B. p. 68.]

Solution. From (fig. 19) we have

Departure = diff. long. X cos. mid. lat. (169)

. . . departure
tang, bearing = ^^^- (170)

dist. == diff. lat. X sec. bearing. (J 71)
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Cases of middle latitude sailing.

35. Problem. To find the course, distance, and dif-

ference of longitude, when both latitudes and the depar-

ture are given. [B. p. 70.]

Solution. The difference of longitude is found by (167), the

course by (170), and the distance by (171).

36. Problem. To find the departure, distance, and

difference of longitude, when both latitudes and the

course are given, [B. p. 72.]

Solution. The departure is found by the formula

departure — diff. lat. X tang, course; (172)

the distance by (171); and the difference of longitude may
be found by (167), or by substituting (172) in (167)

diff. long. z=z diff. lat. X tang, course X sec. mid. lat. (173)

37. Problem. To find the course, departure, and dif-

ference of longitude, when both latitudes and the distance

are given. [B. p. 73.]

Solution. The course is found by the formula

diff. lat.
/t_cos. course == —

; (174)
dist.

v
'

the departure by

departure zsz dist. X sin. course; (175)

and the difference of longitude by (167).

38. Problem. To find the difference of latitude, dis-

8
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tance, and difference of longitude, when one latitude,

course, and departure are given. [B. p. 74.]

Solution. The difference of latitude is found by the formula

diff. lat, = dep. X cotan. course; (176)

the distance by the formula

dist. = dep. X cosec. course; (177)

and the difference of longitude by (167).

39. Problem. To find the course, difference of lati-

tude, and difference of longitude, when one latitude, the

distance, and departure are given.'] B. p. 75.]

Solution. The course is found by the formula

sin. course ±z ,. ; (178)
dist.

v

the difference of latitude by the formula

diff. lat. = dist. X cos. course; (179)

and the difference of longitude by (167).

40. Examples.

1. A ship sailed from Halifax (Nova Scotia) a distance of

2509 miles, upon a course S. 79° 34' E. ; find the place at

which it arrived.

Solution. By § 32,
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dist. = 2509 3-39950 3.39950

course == 79° 34' cos. 9.25790 sin. 9.99276

diff. lat. = 454'= 7° 34' S. 2.65740

given lat. — 44° 36' N. mid. lat.= 40° 49'

required lat. =37° 2'N. cor. — 7'

cor. mid. lat. =40° 56' sin. 10.12178

diff. long. == 3266' — 54° 26' E. 3.51404

given long. = 63° 28' W.

required long. tk 9° 2' W.

Ans. The place arrived at is one mile south of Cape St.

Vincent in Portugal.

2. Find the bearing and distance of Canton from Washing-

ton.

Solution. By § 34,

lat.ofWashington^SS^'N. long. = 77° 3 W.

lat. of Canton =23° 7'N. long. =: 113° 14' E.

diff. lat. = 946' — 15° 46, sum of longs. = 190° 17'

mid. lat. = 31° 0' diff. long. = 169° 43=10183 /

cor. = 31'

cor. mid. lat. = 31° 31' cos. 9.93069

diff. long. = 10183' 4.00788

diff. lat. = 946' ar.co. 7.02411 2.97589

bearing = S. 83° 47' W. tang. 10.96268 sec. 10.96526

dist. — 8733 miles 3.94115
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3. A ship sails from New York a distance of 675J miles,

upon a course S. E. £ S. ; find the place at which it arrives.

Ans. Three miles to the west of Georgetown in Bermuda.

4. Find the bearing and distance of Portland (Maine) from

New Orleans.

Ans. The bearing — N. 49° 25' E.

The distance sc 1257 miles.

5. A ship from the Cape of Good Hope sails northwesterly

until its latitude is 22° 3' S., and its departure 3110 miles I

find its course, distance sailed, longitude, and its distance from

Cape St. Thomas (Brazil).

Ans. Course = N. 76° 38' W.

Distance — 3197 miles.

Longitude r= 18° W.

Distance to the Cape St. Thomas z= 22 miles.

6. A ship sails from Boston upon a course E. by N. until it

arrives in latitude 45° 21' N. ; find the distance, its longitude,

and its distance and bearing from Liverpool.

Ans. Distance sailed = 920 miles.

Longitude — 50° 10' W.

Distance from Liverpool = 1905 miles

Bearing from Liverpool =: S. 75° 22' W.

7. A ship sails southwesterly from Gibraltar a distance of

1500 miles, when it is in latitude 14° 44' N. ; find its course

and longitude and distance from Cape Verde.
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Ans. Course = S. 37° 21' W.

Longitude = 18° 3' W.

Dist. from Cape Verde =r 339 miles.

8. A ship sails from Nantucket upon a course S. 62° ll 7 E.,

until its departure is 2274 miles ; find the distance sailed, and

the place arrived at.

Ans. Distance s= 2571 miles.

The place arrived at is 261 miles north of Santa Cruz.

9. A ship sails southwesterly from Land's End (England), a

distance of 3461 miles, when its departure is 3300 miles ; find

the course and the place arrived at.

Ans. The course = S. 72° 27' W.

The place arrived at is Charleston (South Carolina)

Light House.

8*
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To find the difference of longitude.

CHAPTER V.

MERCATOR S SAILING.

41. The object of Mcreator's Sailing is to give an

accurate method of calculating the difference of longi-

tude. [B. p. 78.]

42. Problem. To find the difference of longitude, when

the distance, the course, and one latitude are known.

Solution. Let A B (fig. 16) be the ship's track. Divide it

into the small portions A a, ab, be, &c, which are such that

the difference of longitude is the same for each of them, and

let

d — this small difference in longitude.

Let also

L — the latitude of A,

L 1— the latitude of B,

I — the latitude of one of the points of division as b,

I' = the latitude of the next point c,

C = the course.

The distance b c may then be supposed so small, that the for-

mulas of middle latitude sailing may be applied to it ; and

(173) gives
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dz=(l'—l)X tang. C X sec. J (/' + l) t (180)

or

i d cotan. C= —^i
r ~?

A ' <
181

)
cos, J (/ +

If, now, the mile is adopted as the unit of length, and if

R = the earth's radius in miles, (182)

J7~ — is the leugth of the arc J (V — Z),

expressed in terms of the radius as unity ; and since this arc

is very small, its length is by § 22 equal to its sine or

i{l'~ l) = sin. i(l'-l); ( 183)

which substituted in (181) gives

d cotan. C _ sin. £ {I
1 — Z)

(184)

(185)

2JR cos. \ (/' + *)

Let now

d cotan. C sin. J (Z' — Z

)

~~2BT
=

co¥. £(/' + Z)
;

and (185) may be written in the usual form of a proportion

sin. i (I' — Z) : cos. £ (Z' + Z) = m : 1

;

(186)

whence, by the theory of proportions

cos, j (V + I) + sin. £ (/' — /) __ 1 + i»

cos. £ (/' + Z) — sin. i
(Z' — I)

~~ \—m (187)

But if in (40) we put

4 = 90°- l(l' + l),B = £ (I' — I); (188)

we have
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A + B = 90° — I, A — B = 90° — /', (189)

and (46) becomes

cos, i (f + /) + bid, j (/'— /)= cotan. (45°— jf)
.

cos. i (/'+ /)— sin. J (/'— I) cotan.(45°— £1)' K
'

whence, if we put

ar=I±A (i9i)
1 — m

colzn.JW.-in =M (1W)
cotan. (45° — i /

)

Hence, the successive values of cotan. (45° — £ I) at the

points A y
a, 6, &c, form a geometric progression; and if

D = the difference of longitude of A and B,

n = the number of portions of AB
;

we have by (185)

n a. 5. ==* g s
^

-, (193)
d 2 Rm tang. C v

'

and by the theory of geometric progression

cotan. (45° — £ L 1

) == cotan. (45° — £ L) W, (194)

and by logarithms

log. cotan. (45°—££.')—loS- cotan - (
45°— lL)=\°g-Mn

. ( 195)

If, lastly, we put

e = M&% (196)

we have

M n s*e**H& (197)
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which substituted in (195) gives by a simple reduction

\j£i
1°g- cotan-(45°-i^

/)-
1^ log.cotan.(45°-jZ)]

X tang. C = D (199)

Now the value of— «— log. cotan. (45°— J L) has

been calculated for every mile of latitude, and inserted

in tables. [B. Table III.] It is called the Meridional

Parts of the Latitude, and the method of computing it-

is given in the following section.

The difference between the meridional parts of the two

latitudes, when the latitudes are both north or both

south, is called the Meridional Difference of Latitude ;

but when one of the latitudes is north and the other

south, the sum of the meridional parts is the meridional

difference of latitude.

Hence (199) gives

D z= diff. long. = mer. diff. lat. X tang course. (200)

43. Corollary. The difference of longitude is as in

(fig. 20.) the leg DE of a right triangle, of which AD
is the meridional difference of latitude, and the angle A
the course ; and by combining this triangle with the

triangle ABC of plane sailing, all the cases of Merca-

tor's Sailing are reduced to the solution of these two

similar right triangles.
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Table of meridional parts.

44. Problem. To calculate the Table of Meridional

Parts.

Solution. I. The value of R is found from the considera-

tion that if

n = the ratio of a circumference to its diameter

= 3.1416, (201)

we have,

2 TV R — the circumference of the earth

= 360° = 21600'

and

R = 3^- m 3437.7. (202)

II. In finding the value of e, the portions of the distance

are supposed to be infinitely small, hence m is by (185) also

infinitely small, and its reciprocal is infinitely great.

If I -\- mis divided by 1 — m, as follows,

l_ w )l4-m(l+2m + 2m2 + &c.

1 — m

+ 2m
2 m — 2 m 2

+ 2m 2

2 m 2 —2 m 3

+ 2m 3

we have by (191)

M= 1 + 2 m + 2 m2 + &c. (203)

But since m is infinitely small, m2
, m 3

, &c. are infinitely
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smaller, and the error of rejecting them in (203) is less than

any assignable quantity ; whence

if/=l+2m

and by the binomial theorem, and (196),

i

e = (1 +2ffl) s

(204)

(2 m) 2

2 m \ 2 m / \ 2 m / 1 . 2 . 3 '

v '

1
But -—

2 hi

ble error,

1

2m

is infinite and gives therefore, without any assigna-

l=-^-,J- -2= A-.&c- (206)
2 m ' 2 m

which, substituted in (205), gives

6=1 2m .2>
I (2m) s (2 m) s

+ &c.
"(2m) 2 1.2 ' (2m) 3 1.2.3

+ &c. (207)= i + i + _i_ j L 1 1^ ^1.2^1.2.3^1.2.3.4

so that e is the sum of a series of terms, the first of

which is unity ) and each succeeding term is obtained

by dividing the 'preceding term by the place of this pre-

ceding term.
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Neperian logarithms. Table of meridional parts.

The value of e is thus computed.

i) 1 . 000000

2) 1 . 000000

3) . 500000

4) . 166667

5) . 041667

6) . 008333

7) .001389

8) . 000198

9) . 000025

. 000003

e — 2.71828 (208)

The sixth place of the value of e is neglected as inaccurate.

This value of e is remarkable, as being the base of the sys-

tem of logarithms invented by Neper, and which are called the

Neperian or hyperbolic logarithms.

III. The values of R (202) and e (208) give

R 3437.7 _ 3437.7 _
ToiTe

~~
log. (2.71828) - 0.43429 ~ ' y15 '7

'
(Z™>

so that we have by (199)

Mer. parts of L = 7915.7 log. co-tan. (45° — | L), (210)

which agrees with the explanation of Table III. given in the

Preface to the Navigator.
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Correction for middle latitude.

45. Examples.

1. Calculate the meridional parts for latitude^45° 48'.

Solution. 2)45° 48'

45° — i L = 45° -- 22° 54' = 22° 6'

22° 6' log. cotan. 0.39141 log 9.59263

7915.7 3.89849

mer. parts of 45° 48' := 3098 3.49112

2. Calculate the meridional parts of latitude 28° 14'.

Am. 1767.

3. Calculate the meridional parts of latitude 83° 59/
.

Am. 10127.

46. Problem. To calculate the correction for middle

latitude sailing.

Solution. If the angle DBC (fig. 19.) were exactly what

it should be in order that the hypothenuse BD should be the

difference of longitude, and the leg JBCthe departure, it would

be the corrected middle latitude, and we should have

diff. long. =sec. cor. mid. lat. X departure

z= sec. cor. mid. Iat. X diff. lat. X tang, course, (211)

which, compared with (200) gives, by dividing by tang, course,

mer. diff. lat. = sec. cor. mid. lat. X diff. lat. (212)

9



98 NAVIGATION AND SURVEYING. [CH. V.

Correction for middle latitude.

• i »
m er. cliff, lat. «*.«*

whence sec. cor. mid. lat. = ——— . (213)
diff. lat.

'

If, from the corrected middle latitude, calculated by

this formula,® the actual middle latitude is subtracted,

the correction of the middle latitude is obtained, as in

the table on p. 76 of the Navigator. The meridional

difference of latitude should be obtained for these cal-

culations, not from the tables of meridional parts, but

directly from the tables of logarithmic sines, &c. by

means of (209) ; and when the difference of latitude is

less than 14°, tables should be used in which the loga-

rithrris are given to seven places of decimals.

The following examples are, for the convenience of the

learner, limited to cases for which the common tables are

sufficiently accurate.

47. Examples.

1. Find the correction for middle latitude sailing, when the

middle latitude is 35°, and the difference of latitude 14°.

Solution. Greater lat. — 35° + 7° — 42°

Less lat. — 35° — 7° = 28°

45° _ £ gr . lat. = 24° cotan. 0.35142

45° — J less lat. = 31° cotan. 0.22123

0.13019 log. 9.11458

7915.7 3.89849

diff. lat. = 840' ar. co. 7.07572

corrected mid. lat. = 35° 24' sec. 10.08879

correction = 35° 24' — 35° = 24'.
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2. Find the correction for middle latitude sailing, when the

middle latitude is 60°, and the difference of latitude 16°.

Ans. 46'.

3. Find the correction for middle latitude sailing, when the

middle latitude is 72°, and the difference of latitude 20°.

Ans. 124'.

48. Problem. To find the bearing and distance of

two given places. [B. p. 79.]

Solution. We have by (fig. 20.) for the bearing,

diff. long. ..,..
tang, bearing = ,._ ,

-
, (214)5 B mer. diff. lat.

v '

and the distance is found by (171).

49. Problem. To find the course, distance, and dif-

ference of longitude, when both latitudes and the depar-

ture are given. [B. p. 80.]

Solution. The course is found by (170), the difference of

longitude by (200), and the distance by (171).

50. Problem. To find the distance and difference of

longitude, when both latitudes and the course are given.

[B. p. 82.]

Solution. The distance is found by (171), and the differ-

ence of longitude by (200).

51. Problem. To find the course and difference of

longitude, when both latitudes and the distance are

given. [B. p. 83.]

Solution. The course is found by (174), and the difference

of longitude by (200).
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52. Problem. To find the distance, the difference of

latitude, and the difference of longitude, when one lati-

tude, the course, and departure are given, [B. p. 84.]

Solution The distance is found by (177), the difference of

latitude by (176), and the difference of longitude by (200).

53. Problem, To find the course, the difference of lati-

tude, and the difference of longitude, when one latitude,

the distance, and the departure are given. [B. p. 85.]

Solution, The course is found by (178), the difference of

latitude by (179), and the difference of longitude by (200), or

by the following proportion deduced from the similar triangles

of (fig. 20.)

Diff. lat. : dep. =z mer. diff. lat. : diff. long, (215)

54. Examples.

1. A ship sails from Boston a distance of 6747 miles, upon a

course S. 46° 59J' E. ; to find the place at which it arrives.

Solution.

Dist. z=z 6747 3.82911

Course = 46° 59£' cos. 9.83385 tang. 10.03022

Diff. lat.=76° 42' S.=4602 /

, 3.66296 mer. d. I. =5007, 3.69958

Lat. Ieft= 42 -21'N. mer. p. 2810

Lat in = 34° 21' S. 2197 diff: long. = 5368' 3.72980

=89°28 / E.

mer. diff. lat. — 5007 long, left .= 71° 5' W.

long, in 1829' W.
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Ans. The place arrived at is the Cape of Good Hope.

2. Find the bearing and distance from Moscow to St.

Helena.

Solution.

Moscow, lat. 55° 46' N. mer. parts 4049 long. 37.° 33' E.

St. Helena, lat. 1 5° 55' S. mer. parts 968 long. 5° 36'W.

Diff. lat. — 71° 41/ mer. diff. lat. 5017 diff.l. — 43° 9'

af 4301' = 2589'

Mer. diff. lat.= 5017 (ar.co.) 6.29956

diff. lon<r.— 2589 3.41313

S.27° 18 W. tang. 9.71269 sec. 10.05127

diff. lat. == 4301 3.63357

dist. z= 4840 miles 3.68484

3. A ship sails from a position 200 miles to the east of Cape

Horn a distance of 3635 miles, upon a course N. N.E. ; find

the position at which it has arrived.

Ans. It has arrived at the equator in the longitude of

16° 6' W.

4. Required the bearing and distance of Botany Bay from

London.

Ans. The Bearing = S. 57° 31' E.

Distance z= 9551 miles.

5. A ship sails northwesterly from Lima until it arrives in

the latitude 23° 7' N., and has made a departure of 9983

miles ; find the place at which it has arrived.

Ans. Canton.
9*
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6. A ship sails from Disappointment Island in the North

Pacific Ocean, upon a course S. 61° 41' E., until it has arrived

in latitude 14° 7'S. ; find the place at which it has arrived.

Ans. The Disappointment Islands in the South Pacific

Ocean.

7. A ship sails from Icy Cape (North West Coast of Amer-

ica) a distance of 9138 miles southeasterly, when it has arrived

in latitude 62° 30' S. ; find the place at which it has arrived.

Ans. Yankee Straits in New South Shetland.

8. A ship sails from Java Head, upon a course S. 68° 53'W ,

until it has made a departure of 4749 miles ; find the position

at which it has arrived.

Ans. It has arrived at a position 180 miles south of the

Cape of Good Hope.

9. A ship sails southeasterly from the South Point of the

Great Bank of Newfoundland a distance of 2821 miles, when

it has made a departure of 910 miles ; find the position at

which it has arrived.

Ans. Its position is 208 miles north of Cape St. Roque.
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Area of triangle.

CHAPTER VI.

SURVEYING.

55. The object of Surveying is to determine the

dimensions and areas of portions of the earth's surface.

In the application of Plane Trigonometry, the portions

of the earth are supposed to be so small that the curva-

ture of the earth is neglected. They are, in this case,

nothing more than common, fields bounded by lines

either straight or curved.

56. Problem. To find the area of a triangular fields

when its angles and one of its sides are known.

Solution. Let ABC (fig. 2.) be the triangle to be measured,

and c the given side. The area of the triangle is equal to

half the product of its base by its altitude, or

(216)area of ABC=$bp.
But, by (123),

sin . b : sin. B : : c : 6,

whence

c sin. B
~ sin. C '

and, by (124),

p =z c sin. A.
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Substituting (216), we have

~ 2 sin. C
c AT>n c 2 sin. ^4 sin. JB #««*%area of ABC = -___-. (217)

57. Problem. To find the area of a triangular field,

when two of its sides and the included angle are

known.

Solution. Let ABC (fig. 2.) be the triangle to be measured,

6 and c the given sides, and A the given angle. Then, by

(216),

area of ABC — £ b p,

and, by (124),

p zz: c sin. A.

Hence

area of ABC= } b c sin. A. (218)

or, the area of a triangle is equal to half the continued

product of two of its sides and the sine of the included

angle.

58. Problem. To find the area of a triangular field,

when its three sides are known.

Solution. Let ABC (fig. 1.) be the given triangle. Then,

by (218),

area of ABC z=z £ b c sin. A ;

but, by (151),

sin. A = iW['(«-*)('-*) ('-«)]
b c

in which s denotes the half sum of the three sides of the tri-

angle.
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Hence

b c sin. A z= 2 a/[s (s— a) (s— b) (s— c)]
;

and

area of ABC= s/[s (s— a) (s— b) (s— c)]
; (219)

or, to find the area of a triangular field, subtract each

side separately from the half stun of the sides ; and the

square 7
%oot of the continued 'product of the half sum

and the three remainders is the required area.

59. Examples.

1. Given the three sides of a triangular field, equal to 45.56

ch., 52.98 ch., and 61.22 ch. ; to find its area.

Solution. In (fig. 1.) let a = 45.56 ch., b =1 52.98 ch.,

c = 61.22 ch.

2 5= 159.76 ch.

s z= 79.88 ch. 1.90244

s— a = 34.32 ch. 1.53555

s — b= 26.90 ch. 1.42975

5 — c=z 18.66 ch. 1.27091

6.13865

Area of ABC— 1 173. 1 sq. ch. 3.06932

Ans. The area = 117 A. 1 R. 9 r.

2. Given the three sides of a triangular field equal to 32.56

ch., 57.84 ch., and 44.44 ch. ; to find its area.

Ans. The area = 71 A. 3 R. 29 r.
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Area of rectilinear field.

3. Given one side of a triangular field equal to 17.35 ch.,

and the adjacent angles equal to 100° and 70°
; to find its

area.

Ans. The area = 85 A. 3 R. 16 r.

4. Given two sides of a triangular field equal to 12.34 ch.

and 17.97 ch., and the included angle equal to 44° 56' ; to

find its area.

Ans. The area = 7 A. 3 R. 13 r.

60. Problem. To find the area of an irregular field

bounded by straight lines.

First Method of Solution. Divide the field into

triangles in any manner best suited to the nature of the

ground. Measure all those sides and angles which can

be measured conveniently, remembering that three

parts of each triangle, one of which is a side, must be

known to determine it.

But it is desirable to measure more than three parts of each

triangle, when it can be done ; because the comparison of

them with each other will often serve to correct the errors of

observation. Thus, if the three angles were measured, and

their sum found to differ from 180°, it would show there was

an error ; and the error, if small, might be divided between

the angles; but if the error was large, it would show the ob-

servations were inaccurate, and must be taken again.

The area of each triangle is to be calculated by one

of the preceding formulas, and the sum of the areas of

the triangles is the area of the whole field.

This method of solution is general, and may be ap-

plied to surfaces of any extent, provided each triangle
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is so small as not to be affected by the earth's curva-

ture.

Second Method of Solution. Let ABCEFH (fig. 21.) be

the field to be measured. Starting from its most easterly or its

most westerly point, the point A for instance, measure succes-

sively round the field the bearings and lengths of all its sides.

Through A draw the meridian NS, on which let fall the

perpendiculars BB, CO, EE", FF', and HH'. Also draw

CB'E', EF", and HF" parallel to NS.

Then the area of the required field is

ABCEFH =z AC'CEFF' — [AC'CB + AHFF 1

].

But
AC'CEFF' = C'CEE' + E'EFF' ;

and

AC'CB + AHFF' = C'CBB' + BBA + AHH'
+ HHFF 1

.

Hence

ABCEFH= [C'CEE' + EEFF] — [C'CBB'

+ BBA + AHH' + H'HFF]
;

or doubling and changing a very little the order of the terms,

2 ABCEFH — [2 C'CEE + 2 E'EFF'] —
£

[2 BBA + 2 CC'BB' + 2 HHFF' + 2 AHH']. >
(22°}

Again,

2 5 ,jB4 = BB' X -4B'

2 CC'BB' =z {BB' + CC) X B'C

2 C'CjEjET = (EE' + CC) X EC" .

2 EEFF' = (EE' + JLF'J X JB'*"
^

2 HHFF' = (Hi/' + JFF") X i?7^'

2 jUTtf' = i?i/' X -4H7
.
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So that the determination of the required area is now reduced

to the calculation of the several lines in the second members

of (221.) But the rest of the solution may be more easily

comprehended by means of the following table, which*is pre-

cisely similar in its arrangement to the table actually used by

surveyors, when calculating areas by this process.

Sides

AB

N. s. E. W. Dep. Sum. N.Areas. S. Areas.

AB BB' BB' BB' BB'A

BC BC BB' CC BB'+CC CC'BB'

CE CE' EE' EE' CC'+ EE' CCEE'

EF EF' pp// FF' EE'+FF' EEFF'

FH FH' FF 7" HH' FF'-f- HH' H'HFF'

HA HA Hir O HH' AHH'

In the first column of the table are the successive

sides of the field.

In the second and third columns are the differences

of latitude of the several sides, the column headed N,

corresponding to the sides running in a northerly direc-

tion, and that headed S, corresponding to those running

in a southerly direction.

These two columns are calculated by the formula

Diff. lat. — dist. X cos. bearing.

In the fourth and fifth columns are the departures of

the several sides ; the column headed E, corresponding

to the sides running in an easterly direction, and that

headed W, to those running in a westerly direction.
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These two columns are calculated by the formula

Departure s= dist. X sin. bearing.

In the sixth column, headed Departure, are the depar-

tures of the several vertices, which end each side of

the field from the vertex A. This column is calculated

from the two columns E and W, in the following man-

ner. The first number in column Departure is the

same as the first in the two columns E and W; and

every other number in column Departure is obtained by

adding the corresponding number in columns E and

W, if it is of the same column with the first number

in those two columns, to the previous number in column

Departure ; and by subtracting it, if it is of a different

column.

Thus,

BB' == BB>

CC == BB" =2 BB' — BB"

EE1 3= E'E" + EE" =. CC + EE"

FF' = F'F" + FF" '= EE + FF"

HH =: F'F'" = FF' FF'"

O =: HH' — HH'.

In the seventh column, headed Sum, are the first

factors of the second members of (221). This column

is calculated from column Departure in the following

manner. The first number in column Sum is the same

as the first in column Departure ; every other number

in column Sum is the sum of the corresponding num-

10
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Rectangular survey.

ber in column Departure added to the previous number

in column Departure, as is evident from simple inspec-

tion.

In the eighth and ninth columns are the values of

the areas, which compose the first members of (221).

These columns are calculated by multiplying the mem-
bers in column Sum by the corresponding numbers in

columns N and S, which contain the second factors of

the second members of (221). The products are writ-

ten in the column of North Areas, when the second fac-

tors are taken from column N, and in that of South

Areas, when the second factors are taken from col-

umn S.

If we compare the columns of North and South

Areas with (220), we find that all those areas, which

are preceded by the negative sign, are the same with

those in the column of North Areas ; while all those,

which are connected with the positive sign, belong to

the column of South Areas. To obtain, therefore, the

value of the second member of (220), that is, of double

the required area, we have only to find the difference

between the sums of the columns of North and South

Areas. [B. p. 107.]

61. Corollary. The columns N, S, E, and W, are those

which would be calculated in Traverse Sailing, if a ship wa s

supposed to start from the point A, and proceed round the

sides of the field till it returned to the point A. The differ-

ence of the sums of columns N and S is, then, by traverse
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Correction of errors.

sailing, the difference of latitude between the point from which

the ship starts, and the point at which it arrives; and the

difference of columns E and W is the departure of the same

two points. But as both the points are here the same, their

difference of latitude and their departure must be nothing, or

Sum of column N = sum of column S ;

Sum of column E = sum of column W.

But when, as is almost always the case, the sums of these

columns differ from each other, the difference must arise from

errors of observation. If the error is great, new observations

must be taken ; but if it is small, it may be divided among

the sides by the following proportion.

The sum of the sides : each side = whole error :

error corresponding to each side.

The errors corresponding to the sides are then to be

subtracted from the differences of latitude, or the de-

partures which are in the larger column, and added to

to those which are in the smaller column.

62. Examples.

1. Given the bearings and lengths of the sides of a field, as

in the three first columns of the following table ; to find its

area.

Solution. The table is computed by § 60.
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2. Given the lengths and bearings of the sides of a field, as

in the following table ; to find its area.

No. Bearings. Dist.

1 N. 17° E. 25 ch.

2 East. 28 ch.

3 South. 54 ch.

4 S. 4° W. 22 ch.

5 N. 33° W. 62 ch.

Ans. The area = 173 A. R. 36 r.

63. Problem. To find the area of a field bounded by

sides, irregularly curved.

Solution. Let ABCEFHIKL (fig. 22.) be the field to be

measured, the boundary ABCEFHIKL being irregularly

curved. Take any points C and F, so that by joining AC,
CF, and FL, the field ACFL

y
bounded by straight lines, may

not differ much from the given field.

Find the area of ACFL, by either of the preceding meth-

ods, and then measure the parts included between the curved

and the straight sides by the following method of offsetts.

Take the points a, 6, c, d, so that the lines A a, a b, b c,

cdy dC may be sensibly straight. Let fall on AC the per-

pendiculars a a1

, bb 1

, cc'
t
dd'. Measure these perpendiculars,

and also the distances Aa'
9
b'c', b'c'

9
c'd', d'C.

10*
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The triangles Acta', Cdd1

, and the trapeziums aba'b',

bcb'c', cdc'd are then easily calculated, and their sum is

the area of ABC.

In the same way may the areas of CEF, FHI, and IKL
be calculated ; and then the required area is found by the

equation

ABCEFH1KL =s ACFL — ABC+ CEF +
FHI— IKL.

Example.

Given (fig. 22.) A a' = 5 ch., a'b' = 2 ch., b 1
c' = 6 ch.,

e'tf = 1 ch., d'C = 4 ch. ; also a a' £s 3 ch., bb' = 2 ch.
}

cc' = 25 ch., rfrf' z= 1 ch. ; to find the area of ABC.

Arts. Required area z:2A. 3 R. 36 r.
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Horizon. Bearing.

CHAPTER VII.

HEIGHTS AND DISTANCES.

64. The plane of the sensible horizon at any place,

is the tangent plane to the earth's surface at that place.

[B. p. 48.]

The horizontal plane coincides with that of the surface of

tranquil waters, when this surface is so small that its curvature

may be neglected ; and it is perpendicular to the plumb line.

65. The angle of elevation of an object is the angle

which the line drawn to it makes with the horizontal

plane, when the object is above the horizon ; the angle

of depression is the same angle when the object is be-

low the horizon.

66. The bearing of one object from another is the

angle included by the two lines which are drawn from

the observer to these two objects.

67. Problem. To determine the height of a vertical

tower, situated on a horizontal plane. [B. p. 94.]

Solution. Observation. Let AB (fig. 23.) be the tower,

whose height is to be determined. Measure off the distance

BC on the horizontal plane of any convenient length. At

the point C observe the angle of elevation ACB.
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Calculation. We have, then, given in the right triangle

ACB the angle C and the base BC, as in problem, § 33 of PL

Trig., and the leg AB is found by (22).

Example.

At the distance of 95 feet from a tower, the angle of eleva-

tion of the tower is found to be 48° 19'. Required the height

of the tower.

Arts. 106.69 feet.

68. Problem. To find the height of a vertical tower

situated on an inclined plane.

Solution. Observation. Let AB (fig. 24.) be the tower

situated on the inclined plane BC. Observe the angle B,
which the tower makes with the plane. Measure off the dis-

tance BC of any convenient length. Observe the angle C,

made by a line drawn to the top of the tower with BC.

Calcidation. In the oblique triangle ABC, there are given

the side BC and the two adjacent angles B and C, as in

§ 72 of PL Trig.

Example.

Given (fig. 24.) BC'= 89 feet, B = 113° 12', C"= 23°

27' ; to find AB.

Ans. AB = 51.595 feet.

69. Problem. To find the distance of an inaccessible

object. [B. p. 89 and 95.]

Solution, Observation. Let B (fig. 2.) be the point, the dis-

tance of which is to be determined, and A the place of the
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observer. Measure off the distance AC of any convenient

length, and observe the angles A and C.

Calculation. AB and BC are found by § 72 of PL Trig.

70. Corollary. The perpendicular distance BP of the

point B from the line AC, and the distances AP and PC
are found in the triangle ABP and BPC, by § 31 of PI. Trig.

71. Corollary. Instead of directly observing the angles A
and C, the bearings of the lines AB y AC, and BC may be

observed, when the plane ABC is horizontal, and the angles

A and C are easily determined.

72. Examples.

1. An observer sees a cape, which bears N. by E. ; after

sailing 30 miles N. W. he sees the same cape bearing east

;

find the distance of the cape from the the two points of obser-

vation.

Arts. The first distance ~ 21.63 miles.

The second dist. — 25.43 miles.

2. Two observers stationed on opposite sides of a cloud ob-

serve the angles of elevation to be 44° 56', and 36° 4', their

distance apart being 700 feet ; find the distance of the cloud

from each observer and its perpendicular altitude.

Ans. Distances from observers =: 417.2 feet, and = 500.6 ft.

Height =z 294.7 feet.

3. The angle of elevation of the top of a tower at one sta-

tion is observed to be 68° 19', and at another station 546 feet



118 NAVIGATION AND SURVEYING. [CH. VII.
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farther from the tower, the angle of elevation is 32° 34'; find

the height and distance of the tower, the two points of obser-

vation being supposed to be in the same horizontal plane with

the foot of the tower.

Ans. The height ; . .
— 234.28 ft.

The dist. from the nearest point of observ. = 135.86 ft.

73. Problem* To find the distance of an object from
the foot of a tower of known height, the observer being

at the top of the tower.

Solution. Observation. Let the tower be AB (fig. 23.), and

the object C. Measure the angle of depression HAC.

Calculation. Since

ACB — HAC,

we know in the triangle ACB the leg AB and the opposite

angle C, as in § 32 of PL Trig.

Example.

Given the height of the tower — 150 feet, and the angle of

depression ==17° 25' ; to find the distance from the foot of

the tower.

Ans. 478=16 feet.

74. Problem. To find the height of an inaccessible

object above a horizontal plane, and its distance from

the observer. [B. p. 96.]

Solution. Observation. Let A (fig. 25.) be the object. At

two different stations, B and C, whose distance apart and
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bearing from each other are known, observe the bearings of

the object, and also the angle of elevation at one of the stations,

as B.

Calculation. In the triangle BCD, the side BC and its

adjacent angles are known, so that BD is found by § 72 of PI.

Trig. In the right triangle ABD, the height AD is, then,

computed by § 33 of PI. Trig.

Example.

At one station the bearing of a cloud is N.N.W., and its

angle of elevation 50° 35'. At a second station, whose bearing

from the first station is N. by E., and distance 5000 feet, the

bearing of the cloud is W. by N. ; find the height of the

cloud.

Ans. 7316.5 feet.

75. Problem. To find the distance of two objects,

ivhose relative position is known. [B. p. 90.]

Solution. Observation. Let B and C (fig. 1.) be the two

known objects, and A the position of the observer. Observe

the bearings of B and C from A,

Calculation. In the triangle ABC, the side BC and the

two angles are known. The sides of AB and AC are found

by § 72 of PI. Trig.

Example.

The bearings of the two objects are, of the first N. E. by

E., and of the second E. by^S. ; the known distance of the first

object from the second is 23.25 miles, and the bearing N. W.
;

find their distance from the observer.
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Ans. The distance of the first object is zn 18.27 miles.

That of the second object = 32.25 miles.

76. Problem. To find the distance apart of two ob-

jects separated by an impassable barrier. [B. p. 91.]

Solution, Observation. Let A and B (fig. 1.) be the ob-

jects ; the distance of which from each other is sought.

Measure the distances and bearings from any point C to both

A and B.

Calculation. In the triangle ABC the two sides AC and

BC and the included angle C are known. The sides AB
and BC may be found by § 81 of PI. Trig.

Example.

Two ships sail from the same port, the one N. 10° E. a dis-

tance of 200 miles, the second N. 70° E. a distance of 150

miles; find their bearing and distance.

Ans. The distance = 180.3 miles.

The bearing of the first ship from the second = N. 36° 6' W.

77. Problem. To find the distance apart of two in-

accessible objects situated in the same plane with the

observer, and their bearing from each other. [B. p. 92.]

Solution. Observation. Let A and B (fig. 26.) be the two

inaccessible objects. At two stations, C and E, observe the

bearings ofA and B and the bearing and distance of C from E.

Calculation. In the triangle AEC we have the side CE,

and the angles ACE and AEC
9
so that AC is found by § 72

of PL Trig.
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In the same way B C is calculated fronvthe triangle BCE.

Lastly, in triangle ABC, we know the two sides AC and .

BC, and the included angle for

ACB = ACE — BCE.

Hence AB and the angles BAC and CBA are found by

§81.

Example.

An observer from a ship saw two headlands ; the first bore

E. N. E., and the second N. W. by N. After he had sailed

N. by W. 16.25 miles, the first headland bore E. and the

second N. W. by W. ; find the bearing and distance of the

first headland from the second.

Ans. Distance = 55.9 miles.

Bearing — N. 65° 33' W.

78. Problem. To find the distance of an object of

known height, which is just seen in the horizon.

Solution. I. If light moved in a straight line, and if A
(fig. 27.) were the eye of the observer, and B the object, the

the straight line APB would be that of the visual ray. The
point P, at which the ray touches the curved surface CPD of

the earth, is the point of the visible horizon at which the ob-

ject is seen. The distances PA and PB may be calculated

separately, when the heights AC and BD are known. For

this purpose, let O be the earth's centre, let BD be produced

to E, and let

h =i AC, H=z BD,
I = PA, L = PB,

R z=z the earth's radius

11
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Since BP is a tangent, and BOE a secant to the earth,

we have

BE: BP = BP : BD;

and BD is so small in comparison with the radius, that we

may take

BE= DE = 2R,

and the above proportion becomes

2 R : L = L : H

;

whence

2,2 — 2 RH, L & V(2 RH)> (222)

H - L2H -21V (223)

and in the same way

72 = 2 R h, I— \/(2 R h), (224)

7
l2

(225)

II. Light does not, however, move in a straight line near

the earth's surface, but in a line curved towards the other

centre , which is nearly an arc of a circle, whose radius is

seven times the earth's radius ; so that for the point of con-

tact P and the distances I and L, the positions of the eye and

of the object are A' and B'. Now if we put

BB' = H>, BD = H
x
— H— H

A!C—h
x ,

we can find the value of H 1 with sufficient accuracy by

changing in (223) R into 7 R, which gives
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L 2

H' — — 1 H

H
x
—H—H=^H= SL 2

" 7R' (226)

L^^dRH,). (227)whence

III. In calculating the value of L by (227), it is usually

desired in statute miles, while the height H
1

is given in feet.

Now we have in the Preface to the Navigator, page v,

R z= 20911790 feet, (228)

whence £ R = 48794177 feet,

log. */(i R) = i log. i R = 3.84418,

and

log. (L in feet) = 3.84418 + % log. (H
1
in feet).

„ - . ., L in feet
But L m miles = ^ ,

so that

log. L in miles = log. L in feet — 3.72263

= 0.12155 + £ log. H
x
in feet, (229)

which agrees with the formula given in the preface to the

Navigator for calculating table X.

IV. The Table may be used for finding L or 7, when H1

and h
1
are given, and then the required distance is the sum

of L and I.

79. Corollary. Table X gives the correction for the error

which is committed in § 67/- by neglecting the earth's curva-
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ture, for it is evident that to the height BP (fig. 28.) of the

object above the visible level must be added the height PC of

the level above the curved surface of the earth, as in B. p. 95.

80. Examples.

1. Calculate the distance in table X at which an object can

be seen from the surface of the earth, when its height is 5000

feet.

Solution.

J log. 5000 ~
£ (3.69897) = 1.84948

constant log. =: 0.12155

dist. = 93.5 (as in table X) 1.97103

2. Being on a hill 200 feet above the sea, I see just appear-

ing in the horizon the top of a mast, which I know to be 150

feet above the water ; how far distant is it ?

Solution. By table X,

200 feet corresponds to 18.71 miles.

150 feet corresponds to 16.20

The distance is 34.91 miles.

3. At the distance of 7J statute miles from a hill the angle

of elevation of its top is 2° 13' ; find its height in feet, the

observer being 20 feet above the sea.
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Solution.

2° 13 tang. 8.58779

7£ miles = 39600 4.59770 By table X.

1533 feet 3.18549 7.50

1 foot correction, height 20 5.12

height = 1534 feet, height 1 1.58

4. Calculate the distance in table X, when the height is

450 feet.

Ans. 28.06 miles.

5. Upon a height of 5000 feet, the top of a hill, one mile

high,J
r

is just visible in the horizon ; how far distant is the

hill?

Ans. 189.6 miles.

6. At the distance of 25 miles from a mountain the angle

of elevation of its top is 3°
; find its height, the observer being

60 feet above the intervening sea.

Ans. 7033 feet.

11*
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SPHERICAL TRIGONOMETRY.

CHAPTER I.

DEFINITIONS.

1. Spherical Trigonometry treats of the solution of

spherical triangles.

A Spherical Triangle is a portion of the surface of a

sphere included between three arcs of great circles.

In the present treatise those spherical triangles only are

treated of, in which the sides and angles are less than 180°.

2. The angle, formed by two sides of a spherical tri-

angle, is the same as the angle formed by their planes.

3. Besides the usual method of denoting sides and

angles by degrees, minutes, &c. ; another method of

denoting them is so often used in Spherical Astronomy,

that it will be found convenient to explain it here.

The circumference is supposed to be divided into 24

equal arcs, called hours ; each hour is divided into 60

minutes of time, each minute into 60 seconds of time,

and so on.

Hours, minutes, seconds, &c. of time are denoted by h, ??i,

s, &c.
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Arcs expressed in time.

4. Problem. To convert degrees, minutes, fyc. into

hours, minutes, fyc. of time.

Solution. Since

360° = 24 h

we have 15° = l\ and 1° = T^
h = 4 W

,

and 15' = l
m

, and V =4%
t&'= I

s
, and I'm 4'.

Hence a° = 4 am, a! = 4 a% a" = 4a';

so that to convert degrees, minutes, fyc. into time, mul-

tiply by 4, and change the marks ° ' " respectively, into

5. Corollary. To convert time into degrees, minutes,

fyc, ?miltiply the the hours by 15 for degrees, and di-

vide the minutes, seconds, fyc. of time by 4, changing

the marks m s
\ into ° ' ".

The turning of degrees, minutes, &c. into time, and the

reverse, may be at once performed by table XXI of the Navi-

gator.

6. Examples.

1. Convert 225° 47' 38" into time.

Solution. By § 4. By Table XXI.

225° = 900™ = 15 h 15*

47' = 188 s — 3™ 8 s 3m Qs

38"= 152' = 2 s 32' 2*32'

225° 47' 38" = 15/l 3™ 10' 32' 15 h 3- 10*32'
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2. Convert 17* 19™ 13 s into degrees, minutes, &,c.

Solution. By § 5. By Table XXI.

17* = 255° 17* 18™ £= 259°

19- 13* = 4° 48' 15" 3- 12s = 48'

17* 19™ 13* = 259° 48' 15" I
s
dti 15"

17* 19™ 13s = 259° 48' 15"

3. Convert 12° 34' 56" into time.

Ans. 50™ 19s 44*.

4. Convert 99° 59' 59" into time.

Ans. 6ft 39™ 59 s 56'.

5. Convert 3/l 2™ 12 s into degrees, minutes, &c.

Ans. 45° 33'.

6. Convert 11* 59™ 59 s into degrees, minutes, &c.

Ans. 179° 59' 45".

7. When an arc is given in time, its log., sine, &c.

can be found directly from table XXVII, by means of

the column headed Hour P. M., in which twice the

time is given, so that the double of the angle must be

found in this column.

The use of the table of proportional parts for these columns

is explained upon page 35 of the Navigator. When the time

exceeds 6*, the difference between it and 12* or 24* must be

used.
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Examples.

1. Find the log. cosine of 19* 33- IV.

Solution.

24* — 19* 2Sm IV == 4* 26- 49*

2 X (4* 26- 49s
) as 8* 53- 38*

8* 53" 36s
P. M. cos. 9.59720

prop, parts of 2* 7

8* 53- 38s P. M. cos. 9.59713

2. Find the angle in time of which the log. tang, is

10.12049.

T 2- 40s P.M. tang. 10.12026

7* prop, parts 23

2) T 2- 47s P.M. 10.12049

Ans. 3* 31- 23J*

3. Find the log. sine of 3* 12- 2s
. Ans. 9.87113.

4. Find the log. cosine of IP 3- 13s
. Ans. 9.98653.

5. Find the log. tang, of 15* m 9*. Ans. 10.00057.

6. Find the log. cotan. of 22* 59- 59s
. Ans. 10.57183.

7. Find the angle in time whose log. secant is 10.23456.

Ans. 3* 37- 26*.

8. Find the angle in time whose log. cosecant is 10.12346*

Ans. 3* 15- 15*.
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Right and oblique triangles.

8. An isosceles spherical triangle is one, which has

two of its sides equal.

An equilateral spherical triangle is one, which has

all its sides equal.

9. A spherical right triangle is one, which has a right

angle ; all other spherical triangles are called oblique.

We shall in spherical trigonometry, as we did in plane

trigonometry, attend first to the solution of right triangles.

id
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Investigation of Neper's Rules.

CHAPTER II.

SPHERICAL RIGHT TRIANGLES.

10. Problem. To investigate some relations between

the sides and angles of a spherical right triangle.

Solution. The importance of this problem is obvious ; for,

unless some relations were known between the sides and the

angles, they could not be determined from each other, and

there could be no such thing as the solution of a spherical

triangle.

Let, then, ABC (fig. 29.) be a spherical right triangle,

right-angled at C. Call the hypothenuse AB, h ; and call the

legs BC and AC, opposite the angles A and B, respectively

a and 6.

Let O be the centre of the sphere. Join OA, OB, OC.

The angle A is, by art. 2, equal to the angle of the planes

BOA and COA. The angle B is equal to the angle of the

planes BOC and BOA. The angle of the planes BOC and

AOC is equal to the angle C, that is, to a right angle; these

two planes are, therefore, perpendicular to each other.

Moreover, the angle BOA, measured by BA, is equal to

BA or A; BOC is equal to its measure BC ox a, and AOC
is equal to its measure ^4Cor b.

Through any point A' of the line OA, suppose a plane to

pass perpendicular to OA. Its intersections A'C and A'B'
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with the planes COA and BOA must be perpendicular to

OA'y because they are drawn through the foot of this perpen-

dicular.

As the plane B'A'C is perpendicular to OA, it must be

perpendicular to AOC \ and its intersection B'C with the

plane BOC, which is also perpendicular to AOC, must like-

wise be perpendicular to AOC. Hence B'C must be per-

pendicular to A'C and OC, which pass through its foot in

the plane AOC.

All the triangles A' OB', AOC, BOC, and ABC are

then right-angled ; and the comparison of them leads to the

desired equations, as follows :

First. We have from triangle A'OB' by (4)

OA 1

cos. A 1OB' z=z cos. h —
;

and from triangles AOC and BOC
OA'

cos. A'OC == cos. b = yr-^-,

cos. B'OC = cos. a =

oc>

oc
OB r

The product of the two last equations is

OA! OC OA!
cos. a cos. b^— x-^^^r;

hence, from the equality of the second members of these equa-

tions,

cos. h =z cos. a cos. b. (230)
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Secondly. From triangle A'B C we have by (4), and the

fact that the angle B'A'C is equal to the inclination of the

two planes BOC and BOA,
A'C

cos. B'A'C = cos. A =z——
;A'B 1
'

and, from triangles A'OC and A' OB', by (4),

tang. COA' = tang.6=—

,

cotan. B'OA' = cotan. ^ = -rrrrr
A'B'

The product of these equations is

_ A'C v
A'O A'C

tang, b cotan. A =_ X^ = ^;
hence cos. A — tang. 6 cotan. h. (231)

Thirdly. Corresponding to the preceding equation between

the hypothenuse h, the angle A, and the adjacent side b, there

must be a precisely similar equation between the hypothenuse

h, the angle B, and the adjacent side a ; which is

cos. B z=z tang, a cotan. h. (232)

Fourthly. From triangles BOC, BOA', and B'A'C,
by (4),

B'C
sin. ^OC' = sin. a

sin. B'OA' = sin. A =

sin. B'A'C M sin. 4=

OB 1
'

B'A'

~OB'
9

B'C
B'A'
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The product of these last two equations is

. _ BA 1 B'C B'C
sin. h sin.^^X^ = M/ J

hence sin. a 5=3 sin. h sin. A. (233)

Fifthly. The preceding equation between h, the angle A,

and the opposite side a, leads to the following corresponding

one between h, the angle B, and the opposite side b ;

sin. b ±z sin. h sin. B. (234)

Sixthly. From triangles C'OA'
9 BAC, and BOC, by

(4),

sin. COA 1 =. sin. 6 ==

cotan. B'A'C = cotan. -4. =
'//^/>B'C

B'C
tang. B'OC == tang, a =7777/-

The product of these last two equations is

4'C , B'C A'C
cotan. ^ tang, a =— X^ = ^;

hence sin. 6 = cotan. J. tang. a. (235)

Seventhly. The preceding equation between the angle A
y

the opposite side a, and the adjacent side b, leads to the fol-

lowing corresponding one between the angle B, the opposite

side b, and the adjacent side a
;

sin. a = cotan. 5 tang. b. (236)

12*
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Eighthly. From (7)

sin. a
tang, a —

,

cos. a

sin. b
tanp*. b =. -\&

cos. 6

which, substituted in (235) and (236), give

cotan. B sin. b
sin. a s=

sin. b :

cos. b

cotan. A sin. a

cos. a

Multiplying the first of these equations by cos. b and the

second by cos. a, we have

sin. a cos. b = cotan. B sin. 6,

sin. b cos. a z= cotan .4 sin. a.

The product of these equations is

sin. a sin. b cos. a cos. 6 ss cotan. ^4 cotan. 2? sin. a sin. 6

;

which, divided by sin. a sin. b, becomes

cos. a cos. b sg cotan. ^4 cotan. I?.

But, by (230),

cos. h zz: cos, a cos. b
;

hence cos. h = cotan. ^4 cotan.A (237)

Ninthly. We have, by (230) and (234),

cos. h
COS. a :zz -,

cos. 6

_ sin. b
sin. B=z——r,

sin. h
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the product of which is, by (7) and (8),

_ sin. b cos. h sin. 6 cos.h
COS. a Sin. B = : : = r. - 7

cos. 6 sin. a cos.6 sin. ft

r= tang, b cotan. h.

But, by (231),

cos. A = tang, b cotan. It

;

hence cos. A = cos. a sin. B. (238)

Tenthly. The preceding equation between the side a, the

opposite angle A, and the adjacent angle B, leads to the fol-

lowing similar one between the side b
9
the opposite angle B ,

and the adjacent angle A
;

cos. B ±s cos. 6* sin. ^4. (239)

11. Corollary. The ten equations, [230-239], have,

by a most happy artifice, been reduced to two very

simple theorems, called, from their celebrated inventor,

Neper's Mules.

In these rules, the complements of the hypothenuse

and the angles are used instead of the hypothenuse and

the angles themselves, and the right angle is neglected.

Of the five parts, then, the legs, the complement of

the hypothenuse, and the complements of the angles
;

either part may be called the middle part. The two
parts, including the middle part on each side, are called

the adjacent parts ; and the other two parts are called

the opposite parts. The two theorems are as follows.

I. The sine of the middle part is equal to the product

of the tangents of the two adjacent parts.
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Neper's Rules.

II. The sine of the middle part is equal to the product

of the cosines of the two opposite parts. [B. p. 436.]

Proof. To demonstrate the preceding rules, it is only neces-

sary to compare all the equations which can be deduced from

them, with those previously obtained. [230 - 239.]

Let there be the spherical right triangle ABC (fig. 30.)

right-angled at C.

First. If co. h were made the middle part, then, by the

above rule, co. A and co. B would be adjacent parts, and a

and b opposite parts ; and we should have

sin. (co. h) = tang. (co. A) tang. (co. B)

sin. (co. h) = cos. a cos. b
;

or cos. h = cotan. A cotan. J5,

cos. h ±3 cos. a cos. b

;

which are the same as (237) and (230).

Secondly. If co. A were made the middle part ; then co. h

and b would be adjacent parts, and co. B and a opposite parts

;

and we should have

sin. (co. A) = tang. (co. h) tang, b,

sin. (co. A) =s? cos. (co. jB) cos. a;

or cos. A === cotan. h tang, h,

cos. A = sin. B cos. a
;

which are the same as (231) and (238).

In like manner, if co. B were made the middle part, we

should have
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cos. B = cotan. 7i tang. a
f

cos. B = sin. A cos. b
;

which are the same as (232) and (239).

Thirdly. If a were made the middle part, then co. B and

b would be the adjacent parts, and co. A and co. h the opposite

parts ; and we should have

sin. a == tang. (co. B) tang 6,

sin. a = cos. (co. ^1) cos. (co. h)
;

or sin. a = cotan. 2£ tang. 6,

sin. a = sin. A sin. 7^

;

which are the same as (236) and (233).

In like manner, if b were made the middle part, we should

have

sin. b = cotan. A tang, a,

sin. b = sin. B sin. h
;

which are the same as (235) and (234).

Having thus made each part successively the middle part,

the ten equations, which we have obtained, must be all the

equations included in Neper's Rules; and we perceive that

they are identical with the ten equations [230-239].

12. Theorem. The three sides of a spherical right

triangle are either all less than 90° ; or else, one is less

while the other two are greater than 90°, unless one of

them is equal to 90°, as in § 16.

Proof. When h is less than 90°, the first member of (230)

is positive ; and therefore the factors of its second member
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Angle and opposite leg both acute or obtuse.

must either be both positive or both negative ; that is, the two

legs a and b must, by PL Trig. § 61, be both acute or both

obtuse.

But when h is obtuse, the first member of (230) is negative

;

and therefore one of the factors of the second member must

be positive, while the other negative ; that is, of the two legs

a and 6, one must be acute, while the other is obtuse.

13. Theorem. The hypothenuse differs less from 90°

than does either of the legs, the case of either side equal

to 90° being excepted.

Proof. The factors cos. a and cos. b of the second member
of the equation (230) are, by (4), fractions whose numerators

are less than their denominators. Their product, neglecting

the signs, must then be less than either of them, as cos a for

instance, or

cos. h < cos. a
;

and therefore, by PL Trig. § 69 and 70, h must differ less from

90° than a does.

14. Theorem. An angle and its opposite leg in a

spherical right triangle must be both acute, or both ob-

tuse, or, by § 16, both equal to 90°.

Proof When A is acute, the first member of (238) is posi-

tive, and therefore the factor cos. a of the second member,

being multiplied by the positive factor sin. JB must be positive

;

that is, a must be acute. But if A is obtuse, the first member
of (238) is negative, and therefore the factor cos. a of the

second member must be negative ; that is, a must be obtuse.
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One side equal to 90°.

15. Theorem. An angle differs less from 90° than

its opposite leg, the case of either side, equal to 90°,

being excepted.

Proof. Since the second member of (238) is the product

of the two fractions cos. a and sin. B, the first member must

be less than either of them. Thus, neglecting the sines,

cos. A < cos. a
;

hence A differs less from 90° than a does.

16. Theorem. When in a spherical right triangle

either side is equal to 90°, one of the other two sides is

also equal to 90°
; and each side is equal to its opposite

angle.

Proof. First. If either of the legs is equal to 90°, the cor-

responding factor of the second member of (230) is, by (59),

equal to zero ; which gives

cos. h = 0,

or, by (59),

h=z90°. .'j

Again, if we have

h =r 90°,

it follows, from (59) and (230), that

= cos. a cos. b,

and therefore either cos. a or cos. b must be zero ; that is,

either a or b must be equal to 90°.
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Sides equal to 90°.

Secondly. When either side is equal to 90°, it follows, from

the preceding proof, that

h 5= 90°
;

which substituted in (233) produces, by (60),

sin. a =. sin* A ;

which gives

a = A

;

because, from § 14, a could not be equal to the supplement

17. Corollary. When both the legs of a spherical

right triangle are equal to 90°, all the sides and angles

are equal to 90°.

18. Theorem. When two of the angles of a spherical

triangle are equal to 90°, the opposite sides are also

equal to 90°.

Proof. For in this case, one of the factors of the second

member of the equation (237) must, by (61), be equal to zero,

since either A or B is 90°
; hence

cos. h = ;

or, by (59),

k = 90°

;

and the remainder of the proposition follows from § 16.

19. Corollary. When all the angles of a spherical

right triangle are equal to 90°, all the sides are also

equal to 90°.
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Limits of the angles.

20. Theorem. The sum of the angles of a spherical

right triangle is greater than 180°, and less than 360°
;

and each angle is less than the sum of the other two.

Proof. I. It is proved in Geometry, that the sum of the

angles of any spherical triangle is greater than 180°.

II. It is proved in Geometry, that each angle of any spheri-

cal triangle is greater than the difference between two right

angles and the sum of the other two angles. Hence if the

sum of the two angles A and B is greater than 180°, we
have

90° > A + B — 180°,

or A + B < 270°,

or A + B + 90° < 360°
;

that is, the sum of the three angles is less than 360° ; for in

case the sum of the angles A and B is less than 180°, the

sum of the three angles is obviously less than 360°.

III. When the right angle is greatest of the three angles,

we have

90° + A + B > 180°,

or A + B > 90°
;

that is, the greater angle is in this case less than the sum of

the other two.

But if one of the other angles A is the greatest of the three

angles, we have, by the proposition of Geometry last referred to,

B > 90° + A — 180°,

or B > A — 90°,

or A < B + 90°
;

13
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so that in every case one angle is less than the sum of the

other two.

21. To solve a spherical right triangle, two parts

must be known in addition to the right angle. From
the two known parts, the other three parts are to be

determined, separately, by equations derived from Ne-

per's Rules. The, two given parts, with the one to be

determined are, in each case, to enter into the same

equation These three parts are either all adjacent to

each other, in which case the middle one is taken as the

middle part, and the other two are, by <§> 11, adjacent

parts
;
or one is separatedfrom the other two, and then

the part, which stands by itself, is the middle part,

and the other two are, by § 11, oppotite parts.

22. Problem. To solvo a spherical right triangle,

when the hypothenuse and one of the angles are given.

Solution. Let ABC (fig. 30.) be the right triangle, right-

angled at C; and let the sides be denoted as in § 10. Let h

and A be given ; to solve the triangle.

First. To find the other angle B. The three parts, which

are to enter into the same equation, are co. /*, co. A, and co. B;
and, by § 21, as they are all adjacent to each other, co. h is

the middle part, and co. A and co. B are adjacent parts.

Hence, by Neper's Rules,

sin. (co. h) =z tang. (co. A) tang. (co. B),

or cos. h == cotan. A cotan. B ;

and, by (6),
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_ cos. h
cotan. B = = cos. /* tang. A

cotan. A

Secondly. To find the opposite leg a. The three parts are

co. A, co. k, and a; of which, by § 21, a is the middle part,

and co. h and co. A are the opposite parts. Hence, by Neper's

Rules,

sin. a = cos. (co. h) cos. (co. A)
y

or sin. a — sin. h sin. A.

Thirdly. To find the adjacent leg b. The three parts are

co. A
y

co. h, and 6 ; of which co. A is the middle part, and

co. h and b are the adjacent parts. Hence, by Neper's Rules,

sin. (co. A) z=z tang. (co. h) tang. 6,

or cos. A =z cotan. h tang, b ;

and, by (6),

cos. J.
tang. 6 = j- z= tang, h cos. -4.a

cotan. h °

23. Scholium. The tables always give two angles, which are

supplements of each other, corresponding to each sine, cosine,

&/C But it is easy to choose the proper angle for the particu-

lar case, by referring to § 12 and 14 ; or by having regard to

the signs of the different terms of the equation, as determined

by PL Trig. § 61.

24. Scholium. When h and A are both equal to 90°, the

values of cotan. B and tang, b are indeterminate ; for the nu-

merators and denominators of the fractional values are, by

(59) and (61), equal to zero ; and in this case there are an
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infinite number of triangles which satisfy the given values of

h and A.

The problem is impossible by § 18, if the given value of h

differs from 90°, while that of A is equal to 90°.

25. Examples.

1. Given in the spherical right triangle (fig. 30.), 1i = 145°

and A = 23° 28' ; to solve the triangle.

Solution,

h, cos. 9.91336 *n, sin. 9.75859, tang. 9.84523 n,

4, tang. 9.63761, sin. 9.60012, cos. 9.96251

jB,cotan. 9.55097 n; asm. 9.35871; b tang. 9.80774 n.

Ans. B = 109° 34' 33", a = 13° 12' 12", b = 147° 17 1 5".

2. Given in the spherical right triangle, (fig. 30.), h = 32°

34', and A =* 44° 44' ; to solve the triangle.

Ans. ^ — 50° 8' 21",

a ~ 22° 15' 43",

b =. 24° 24' 19".

26. Problem. To solve a spherical right triangle,

when its hypothenuse and one of its legs are given.

* The letter n placed after a logarithm indicates it to be the logarithm

of a negative quantity, and it is plain that, when the number of such

logarithms to be added together is even, the sum is the logarithm of a

positive quantity ; but if odd, the sum is the logarithm of a negative

quantity.
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Solution, Let ABC (fig. 30.) be the triangle; h the given

hypothenuse, and a the given leg.

First. To find the opposite angle A ; a is the middle part,

and co. A and co. h are the opposite parts. Hence

sin. a z=i cos. (co. h) cos. (co. A)
j

or sin. a at sin. h sin. A ;

and, by (6),

sin. a
sin. A = —

—

T = sin. a cosec. h.
sin. A

Secondly. To find the adjacent angle B ; co. JB is the mid-

dle part, and co. h and a are the adjacent parts. Hence

sin. (co. B) == tang, a tang. (co. h),

or cos. J5 := tang, a cotan. ^.

Thirdly. To find the other leg b; co.h is the middle part,

and a and b are the opposite parts. Hence

cos. h ss cos. a cos. 6 ;

and, by (6),

cos. h _

cos. o = = sec. a cos. h.
cos. a

27. Scholium. The question is impossible by § 13, when the

given value of the hypothenuse differs more from 90° than that

of the leg.

28. Solution. When h and a are both equal to 90°, it may

be shown, as in § 24, that the values of B and b are indeter-

minate.

13*
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A leg and the opposite angle given.

29. Example.

Given in the spherical right triangle (fig. 30.), az= 141° \l>

and h z=z 127° 12' ; to solve the triangle.

Ans. A = 128° 6f 54",

B z= 52° 22' 24',

b =z 39° 6' 23".

30. Problem. To solve a spherical right triangle,

when one of its legs and the opposite angle are given.

Solution. Let ABC (fig. 30.) be the triangle, a the given

leg, and A the given angle.

First. To find the hypothenuse h ; a is the middle part, and

co. h and co. A are the opposite parts. Hence

sin. a =z sin. h sin. A

;

and, by (6),

. sin. a . ;
sin. h z= z= sin. a cosec. A.

sin. A

Secondly. Te find the other angle B ; co. A is the middle

part, and a and co. B are the opposite parts. Hence

cos. A — cos. a sin. B ;

and, by (6),

cos. 4
sin. 5 zzz z= sec. a cos. A.

cos. a

Thirdly. To find the other leg. b ; 6 is the middle part,

and a and co. A are the adjacent parts. Hence

sin. b z= tang, a cotan. ^4.
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31. Scholium. There are two triangles ABC and A'BC
(fig. 31.) formed by producing the sides AB and AC, to the

point of meeting A 1

, both of which satisfy the conditions of

the problem. For the side BC ox a, and the angle A, or by

§ 2 its equal A', belong to both the triangles.

Now ABA' and ACA' are semicircumferences. Hence h',

the hypothenuse of A'BC, is the supplement of A; b 1
is the

supplement of b ; and A'BC is the supplement of ABC. One
set of values, then, of the unknown quantities, given by the

tables, as in § 23, corresponds to the triangle ABC, and the

other set to ABC.

32. Corollary. When the given values of a and A are

equal, the values of h, B, and b become

sin. li — 1, sin. B z= 1, sin. b =. 1 ;

or, by (60),

h = 90°, B = 90°, b == 90°
;

as in § 16.

33. Corollary. When a and A are equal to 90°, the values

of b and B are indeterminate, as in § 24.

34. Scholium. The problem is, by § 14, impossible, when

the given values of the leg and its opposite angle are such, that

one is obtuse, while the other is acute, or that one is equal to

90°, while the other differs from 90° ; and, by § 15, it is im-

possible, when the given value of the angle differs more from

90° than that of the leg.
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35. Example.

Given in the spherical right triangle, (fig. 30.), a =± 35° 44',

and A = 37° 28' ; to solve the triangle.

Ans. h = 73° 45' 15"
)

( h = 106° 14' 45"

B — IT 54' \ or { B = 102° 6'

b c= 69° 50' 24" j ( b = 110° 9' 36".

36. Problem. To solve a spherical right triangle,

when one of its legs and the adjacent angle are given.

Solution. Let ^4jBC(fig. 30.) be the triangle, a the given

leg, and B the given angle.

First. To find the hypothenuse h ; co. B is the middle part,

and co. h and a are adjacent parts. Hence

cos. B = tang, a cotan. h ;

and, by (6),

cos. B _
cotan. h z= =s cotan. a cos. 2*.

tang, a

Secondly. To find the other angle A ; co. J. is the middle

part, and co. B and a are opposite parts. Hence

cos. A = cos. a sin. J3.

Thirdly. To find the other leg b ; a is the middle part, and

co. B and 6 are adjacent parts. Hence

sin. a = tang, b cotan. J5

;

and, by (6),

sin. «
.

tang. 6 = =; = sin. a tang. J5.6 cotan. ii
&
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37. Example.

Given in the spherical right triangle, (fig. 30.), a= 118°54 /

,

and B — 12° 19' ; to solve the triangle.

Ans. h =. 118° 20' 20",

A =- 95° 5# 2",

b — 10° 49' 17".

38. Problem. To solve a spherieal right triangle,

when its two legs are given.

Solution. Let ^.BC (fig. 30.) be the triangle, a and b the

given legs.

First. To find the hypothenuse h ; co. h is the middle part,

a and b are opposite parts. Hence

cos. h =z cos. a cos. b.

Secondly. To find one of the angles, as A ; b is the middle

part, and co. A and a are adjacent parts. Hence

sin. b ±b tang, a cotan. ^4 ;

and, by (6),

sin.
cotan. A = = cotan. « sin. 6.

tang, a

In the same way,

cotan. B == cotan. b sin. a.
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The angles given.

39. Example.

Given in the spherical right triangle, (fig. 30.), a =i 1°, and

b = 100°
; to solve the triangle.

Ans. h — 99° 59' 52/r
,

i= 1° 0' 56",

J5z=90° 11' 24".

40. Problem. To solve a spherical right triangle,

when the two angles are given.

Solution. Let ABC (fig. 30.) be the triangle, A and B the

given angles.

First. To find the hypothenuse h ; co. h is the middle part,

and co. A and co. B are adjacent parts. Hence

cos. h = cotan A cotan. B.

Secondly. To find one of the legs, as a ; co. A is the mid-

dle part, and co. B and a are the opposite parts. Hence

cos. A 33: cos. a sin. B \

and, by (6),

cos. A
cos. a = -^—=r = cos. J. cosec. B.

sin. X5

In the same way,

cos. b — cosec. A cos. Z?.

41. Scholium. The problem is, by § 20, impossible, when

the sum of the given values of A and B is less than 90°, or
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greater than 270°, or when their difference is greater than

90.°

.42. Example.

Given in the spherical right triangle, (fig. 30.), A = 91° 1 1',

and B = 111 IV, to solve the triangle.

[jins. h = 89° 32' 28",

a = 91° 16' 8",

b = 109° 52 EH
/ o *
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Sines of sides proportional to sines of opposite angles.

CHAPTER III.

SPHERICAL OBLIQUE TRIANGLES.

42. Theorem. The sines of the sides in any spherical

triangle are proportional to the sines of the opposite

angles. [B. p. 437.]

Proof. Let ABC (figs. 32 and 33.) be the given triangle.

Denote by a, b, c, the sides respectively opposite to the angles

A, By C. From either of the vertices let fall the perpendicu-

lar BP upon the opposite side AC. Then, in the right triangle

ABP
y
making BP the middle part, co. c and co. BAP are

the opposite parts. Hence, by Neper's Rules,

sin. BP =± sin. c sin. BAP == sin. c sin. A.

For BAP is either the same as A, or it is its supplement, and

in either case has the same sine, by (91).

Again, in triangle BPC, making BP the middle part, co. a

and co. C are the opposite parts. Hence, by Neper's Rules,

sin. BP =s= sin. a sin. C;

and, from the two preceding equations,

sin. c sin. A = sin. a sin. C,

which may be written as a proportion, as follows

;

sin. a : sin. A = sin c : sin. C.

In the same way,

sin. a : sin. A = sin. b . sin. B.
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Bowditch's Rules.

43. Theorem. BowditcK's Rules for Oblique Tri-

angles. If, in a spherical triangle, two right triangles

are formed by a perpendicular let fall from one of its

verticles upon the opposite side ; and if, in the two

right triangles, the middle parts are so taken that the

perpendicular is an adjacent part in both of them ; then

The sines of the middleparts in the two triangles are

proportional to the tangents of the adjacent parts.

But, if the perpendicular is an opposite part in both

the triangles, then

The sines of the middle parts are proportional to the

cosines of the opposite parts. [B. p. 437.]

Proof. Let M denote the middle part in one of the right

triangles, A an adjacent part, and O an opposite part. Also

let m denote the middle part in the other right triangle, a an

adjacent part, and o an opposite part ; and let p denote the

perpendicular.

First. If the perpendicular is an adjacent part in both tri-

angles, we have, by Neper's Rules,

sin. M ==; tang. A tang, p,

sin. m — tang, a tang, p ;

whence

sin.M tang. A tang, p tang. A
sin. m tang, a tang, p

~~
tang, a

*

or sin. M : sin. m =z tang. A : tang. a.

Secondly. If the perpendicular is an opposite part in both

the triangles, we have, by Neper's Rules,

14
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Two sides and the included angle given.

sin. M z=z cos. O cos. p t

sin. m z= cos. o cos. p ;

sin. 31 cos. O cos. p cos. O
sin. m cos. o cos. p cos. o

'

sin. M : sin. m — cos. O : cos o.

44. Problem. To solve a spherical triangle, when

two of its sides and, the included angle are given.

[B. p. 438.]

Solution. Let ABC (figs. 32 and 33.) be the triangle,

a and b the given sides, and C the given angle. From B let

fall on .AC the perpendicular BP.

First. To find PC, we know, in the right triangle BI£C,

the hypothenuse a and the angle C. Hence, by means of

Neper's Rules,

tang. PC= cos. C tang. a. (239)

Secondly. AP is the difference between AC and PC,
that is,

(fig. 32.) AP— b— PC ot (fig 33.) AP=PC— b. (240)

Thirdly. To find the side c. If, in the triangle BPC
f

co. a is the middle part, PC and PjB are opposite parts ; and

if, in the triangle ABP
t
co. c is the middle part, BP and AP

are the opposite parts. Hence, by Bowditch's Rules,

cos. PC : cos. AP = sin. (co. a) : sin. (co. c),

or cos. PC : cos. -4P z= cos. a : cos. c. (241)
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Rules for acute or obtuse angles and sides.

Fourthly, To find the angle A. If, in the triangle BPC,
PC is the middle part, co. C and BP are adjacent parts; and

if, in the triangle ABP, AP is the middle part, co. BAP
and BP are adjacent parts. Hence, by Bowditch's Rules,

sin. PC : sin. PA = cotan. C : cotan. BAP
; (242)

and BAP is the angle A (fig. 32.), when the perpendicular

falls within the triangle ; or it is the supplement of A (fig. 33.),

when the perpendicular falls without the triangle.

Fifthly. B is found by means of (344),

sin. c : sin. C = sin. b : sin. B. (243)

45. Scholium. In determining PC, c, and BAP, by (239),

(241), and (242), the signs of the several terms must be care-

fully attended to; by means of PI. Trig. § 61.

But to determine which value of B, determined by (243),

is the true value, regard must be had to the following rules,

which are proved in Geometry.

I. The greater side of a spherical triangle is always

opposite to the greater angle.

II. Each side is less than the sum of the other two.

III. The sum of the sides is less than 360°.

IV. Each angle is greater than the difference between

180°, and the sum of the other two angles.

There are, however, cases in which these conditions are all

satisfied by each of the values of B. In any such case this

angle can be determined in the same way in which the angle

A was determined, by letting fall a perpendicular from the
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vertex A on the side BC. But this difficulty can always be

avoided, by letting fall the perpendicular upon that of the two

given sides which differs the most from 90°.

46. Corollary. By (240), (104), and (29), we have

cos. AP = cos. (b — PC) s= cos. (PC— b)

= cos. b cos. PC + sin. b sin. PC, (244)

which, substituted in (241), gives

cos. PC: cos. b cos. PC-\- sin. b sin. PC=z cos. a : cos. c.

Dividing the two terms of the first ratio by cos. PC, we have

by (7),

1 : cos. b -|- sin. b tang. PC r= cos. a : cos. c. (245)

The product of the means being equal to that of the extremes,

we have

cos. c z=z cos. a cos. b -|- sin. b cos. a tang. PC. (246)

But by (239)

tans. PC= cos. C tang, a = ,s 5
cos. a '

or cos. a tang. PC = cos. C sin. a

;

(247)

which, substituted in (246), gives

cos. c —= cos. a cos. 6 -f- sm - a sm « ^ cos « C> (248)

which is owe o/* the fundamental equations of Spherical

Trigonometry.

47. Corollary. We have, by (48),

cos. C=zl-+2(cos. £C) 2
,
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which, substituted in (248), gives, by (28),

cos. c == cos. (a -f- b) + 2 sin. a sin. b (cos. £ C) 2
, (249)

from which the value of the side c can readily be found by

using the table of Natural Sines.

48. Corollary. We have, by (49),

cos. C— 1 — 2 (sin.JC) 2
,

which, substituted in (248), gives, by (29),

cos. c — cos. (a— b)— 2 sin. a sin. b (sin. J C) 2
, (250)

which can be used like formula (249).

49. Corollary. The use of formula (250) is much facilitated

by means of the column of Rising in Table XXIII of the

Navigator. This column contains the values of

log. 2 (sin. £ C) 2 — 2 log. sin. £ C+ log. 2

= 2 log. sin. iC+ 0.30103. (251)

But the decimal point is supposed to be changed so as to

correspond to the table of Natural Sines, that is, 5 is added to

the logarithm ; and 20 is to be subtracted from the value of

2 log. sin. J C, which is given by table XXVII, as is evident

from PI. Trig. § 30. So that the coltimn Rising of Table

XXIII is constructed by the formula

log. Ris. C = 2 log. sin. J C+ 5.30102— 20

— 2 log. sin. J C— 14.69897, (252)

which agrees with the explanation in the Preface to the

Navigator.

14*
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Two sides and the included angle given.

50. By using table XXIII, the following rule is ob-

tained for finding the third side, when two sides and

the included angle are given.

Add together the log. Rising of the given angle, and

the log. msines of the two given sides. The sum is the

logarithm of a number, which is to be subtracted from
the natural cosine of the difference of tioo given sides

{regard being had to the sign of this cosine). The dif-

ference is the natural cosine of the required side.

51. Examples.

1.

Si

Calculate the value of log.

)lution>

£ (4*28 w) = 2 h U m

log. Ris. 4*28"

Ris. of 4A

sin

28-.

9.74189

2

19.48378

14.69897

4.78481

2. Given in the spherical triangle two sides equal to 45° 54',

and 138° 32, and the included angle 98° 44'; to solve the

triangle.

Solution. I. by (239),

€=: 98° 44/
cos. 9.18137 n.

a == 45° 54' tang. 0.01365

PC =171° 6' 16" tang. 9.19502 n.
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By (940),

AP = 171° 6' 16" — 138° 32' == 32° 34' 16".

By (241),

PC = 171° 6' 16" cos. (ar.co.) 10.00525 n.

AP = 32° 34' 16" cos. 9.92569

a = 45° 54' cos. 9.84255

c = 126° 24' 45" cos. 9.77349 w.

By (242),

PC = 171° 6' 16" sin. (ar. co.) 10.81071

AP = 32° 34' 16" sin. 9.73106

C = 98° 44' cotan. 9.18644 ».

BAP = 118° 8' 19" cotan. 9.72821 n.

A = 180° — 118° 8' 19" =3 61° 51' 41".

By (243),

c = 126° 24' 45" sin. (ar. co.) 10.09433

C = 90° 44' sin. 9.99494

b = 138° 32' sin. 9.82098

B = 125° 34' 48"' sin. 9.91025

Ans. c = 126° 24' 45"

A = 61° 61' 41"

B = 125° 34' 48".
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• Two sides and the included angle given.

II. The third side is thus caloulated by means of (249),

2 log. 0.30103

45° 54' sin. 9.85620

138° 32' sin. 9.82098

£(98° 44')= 49° 22' 2 cos. 19.62744

0.40332 9.60565

— 0.99683 = Nat. cos. (13S° 32'+ 45° 54')= N. cos. 18426

_ 0.59351 = Nat. cos 126° 24' 23" = c.

III. The third side is thus calculated by § 41.

98° 44' « 6* 34™ 56' '

log. Ris. 5.06139

45° 54' sin. 9.85620

138° 32' sin. 9.82098

54774 4.73857

92° 38' N. cos. — 4594

c = 126° 25' 8" N. cos. — 59368

3. Calculate the log. Ris. of HM2 m 20*.

Ans. 5.29632.

4. Given in a spherical triangle two sides equal to 100°, and

125°, and the included angle equal to 45° ; to solve the tri-

angle.

Ans. The third side = 47° 55' 52"

The other two angles — 69° 43' 48", and= 128° 42' 48".
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A side and the two adjacent angles given.

52. Problem. To solve a spherical triangle, when

one of its sides and the two adjacent angles are given.

[B. p. 438.]

Solution. Let ABC (figs. 32 and 33.) be the triangle ; a

the given side, and B and C the given angles. From B let

fall on AC the perpendicular BP.

Fir$t. To find PBCf
we know, in the right triangle BPC

y

the hypothenuse a and the angle C. Hence, by Neper's

Rules,

cotan. PBC= cos. a tang. C. (253)

Secondly. ABP is the difference between ABC and PBC,
that is,

(fig. 32.) ABP =B — PBC,

or (fig. 33.) ABP = PBC— B. (254)

Thirdly. To find the angle A. If, in the triangle PBC,
co. C is the middle part, PB and co. PBC are the opposite

parts; and if, in the triangle ABP, co. BAP is the middle

part, PB and co. ABP are the opposite parts. Hence, by

Bowditch's Rules,

cos. (co. PBC) : cos. (co. ABP) — sin. (co. C) : sm.(co.BAP),

or sin. PBC : sin. ABP= cos. C : cos. BAP
; (255)

and BAP is either the angle A or its supplement.

Fourthly. To find the side c. If, in the triangle PBC,
co PBC is the middle part, PB and co. a are the adjacent

parts ; and if, in the triangle ABP, co. ABP is the middle

part, PB and co. c are the adjacent parts. Hence, by Bow-

ditch's Rules,

cos. PBC : cos. ABP s= cotan. a : cotan. c. (256)
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A side and the two adjacent angles given.

Fifthly, b is found by the proportion

sin. C : sin. c s= sin. B : sin. b. (257)

53. Scholium. In determining PBC, BAP, and c by (253),

(255), and (256), the signs of the several terms must be care-

fully attended to, by means of PI. Trig. § 61.

To determine which value of b, obtained from (257), is the

true value, regard must be had to the rules of § 45. #But if

all these conditions are satisfied by both values of b, then b

may be calculated by letting fall a perpendicular from C on

the side c in the same way in which c has been obtained in

the preceding solution. But this case can be avoided by let-

ting fall the perpendicular from the vertex of that one of the

two given angles, which differs the most from 90°.

54. Corollary. Since 180° — a, 180° — b, and 180° — c

are the angles of the polar triangle, and 180°— A, 180°— B,
and 180° — C are its sides ; we have given in the polar tri-

angle the two sides 180° — jB, and 180° —- C, and the in-

cluded 180° — a ; so that the polar triangle might be solved

by § 44.

55. Corollary, If formula (248) is applied to the polar tri-

angle of the preceding section, it becomes by PI. Trig. § 60,

— cos. A = cos. B cos. C— sin. B sin. C cos. a,

or cos. A*—— cos. jB cos. C+sin.jBsin. Ccos. a. (258)

56. Corollary. In the same way (249) becomes by (92)

and (116),

cos. A=— cos. (B+ C )—2 sin.B sin. C(sin. £ a)*, (259)
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from which the value of the third angle may be found by

means of table XXIII.

57. Corollary. In the same way (250) becomes by (92),

cos. A=z— cos.(J3— C)+2sin.jBsin.C(cos.£a) 2
, (260)

from which the value of the third side may be found.

58. Examples.

1. Given in a spherical triangle one side equal to 175° 27',

and the two adjacent angles equal to 126° 12', and 109° 16';

to solve the triangle.

Solution. I. By (253),

a = 175° 27' COS. 9.99863 n.

C = 109° 16' tang. 0.45650 n.

PBC = 19° 19' 24" cotan. 0.45513

By (254),

ABP = 126° 12' — 19° 19' 24" = 106° 52 36".

By (255),

PBC— 19° 19' 24"

ABP = 106° 52' 36"

C = 109° 16'

BAP = 162° 36'

sin. (ar. co.) 10.48031

sin. 9.98088

cos. 9.51847 n.

COS. 9.97966 n.
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By (256),

PBC= 19° 19' 24" cos. (ar. co.) 10.02518

ABP === 106° 52' 36" cos. 9.46288 n.

a = 175° 27' cotan. 1.09920 n.

c = 14° 30' 9" cotan. 0.58726

.4 = .R4P = 162° 36'.

•

By (257),
•

C = 109° 16' sin. (ar. co.) 10.02503

c = 14° 30' 9" sin. 9.39867

B = 126° 12' sin. 9.90685

b = 167° 38' 21" sin. 9.33055

Ans. A = 162° 36'

b = 167° 38' 21"

cz=z 14° 30' 9".

II. The third angle is thus calculated by means of (259).

175° 27' = 1

1

h 41 m 48* log. Ris. 5.30035

126° 12' . sin. 9.90685

109° 16' sin. 9.97497

— 152115 5.18217

235° 28' — N. cos. 56689

162° 36 12" N.cos. — 95426
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III. The third angle is thus calculated by means of (260),

2 log. 0.30103

J (175° 27) = 87° 43' 30" 2 cos. 17.19750

126° 12' sin. 9.90685

109° 16' sin. 9.97497

0.00240 7.38035

16° 56' — N. cos. — 0.95664

A= 162° 36' N. cos. — 0.95424

2. Given in a spherical triangle one side = 45° 54',

and the two adjacent angles =z 125° 37', and = 98° 44' ; to

solve the triangle.

Ans. The third angle = 61° 55' 2",

The other two sides = 138° 34' 22", and = 126° 26' 11".

59. Problem. To solve a spherical triangle, token

two sides and an angle opposite one of them are given.

[B. p. 437.]

Solution. Let ABC (figs. 32 and 33.) be the triangle, a and

c the given sides, and C the given angle. From B let fall on

AC the perpendicular BP.

First. To find PC. We know, in the right triangle PBC,
the side a and the angle C. Hence, by Neper's Rules,

tang. PC z=l cos. Ctang. a. (261)

Secondly. To find AP. If, in the triangle PBC, co. a is

the middle part, CP and PB are the opposite parts; and if,

15
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in the triangle ABP, co. c is the middle part, AP and PB
are the opposite parts. Hence, by Bowditch's Rules,

cos. a : cos. c — cos. PC : cos. AP. (262)

Thirdly. To find b. There are, in general, two triangles

which resolve the problem, in one of which (fig. 32.)

b = PC+ AP, (263)

and in the other (fig. 33.)

b = PC— AP. (264)

But, if AP is greater than PC, there is but one triangle,

as in (fig. 32.), and b is obtained by (263) ; or, if the sum of

AP and PC is greater than 180°, there is but one triangle,

as in (fig. 33.), and b is obtained by (264).

Fourthly. A and B are found by the proportion

sin. c : sin. C =. sin. a : sin. A (265)

sin. c : sin. C =. sin. b : sin. B. (266)

60. Scholium. In determining PC and AP by (261) and

(262), the signs of the several terms must be carefully at-

tended to by means of PL Trig. § 61.

The two values of A, given by (265), correspond respective-

ly to the two triangles which satisfy the problem ; and the

one, which belongs to each triangle, is to be selected, so that

the angle BAP, which is the same as A in (fig. 32.), and

the supplement of A in (fig. 33.), may be obtuse if C is ob-

tuse, and acute if C is acute. For BP is the side opposite

BAP in the right triangle ABP, and the side opposite C in

the triangle BCP ; and therefore, by § 14, BP, BAP, and

C are all at the same time acute, or all obtuse.
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Of the two values of B, given by (266), the one which be-

longs to each triangle is to be determined by means of the

rules of § 45.

61. Scholium. The problem is, by a proposition of Geome-

try, impossible, when the given value of c differs more from

90° than that of a ; if, at the same time, the value of one of

the two quantities, c and C, is acute, while that of the other

is obtuse. And in this case we should find that AP was

larger than PC, and at the same time that the sum of AP
and PC was more than 180°.

62. Examples.

1. Given in the spherical triangle, one side z= 35°, a second

side = 142°, the angle opposite the second side = 176° ; to

solve the triangle.

Solution. By (261),

C — 176° cos. 9.99894 n.

a=L 35° tang,

tang.

9.84523

PC = 145° 3' 56" 9.84417 n.

By (262),

a— 35° cos. (ar. co.) 10.08664

PC —. 145° 3' 56" cos. 9.91371 n.

c == 142° cos. 9.89653 n.

AP = 37° 56' 30" cos. 9.89688



172 SPHERICAL TRIGONOMETRY. [CH. III.

Two sides and an opposite angle given.

By (264),

b = 145° 3' 56" — 37° 56' 30" = 107° 7 / 26".

By (265),

c = 142° sin. (ar.co.) 10.21066

C =z 176° sin. 8.84358

a— 35°

43' 34"

sin. 9.75859

A= 3° sin. 8.81283

By (266),

c ±s 142° sin. (ar.co.) 10.21066

C= 176° sin. 8.84358

b == 107° r 26"

12' 58"

sin. 9.98030

J5= 6° sin. 9.03454

Amr. b = 107° 7' 26"

A = 3° 43' 34"

B = 6° 12' 58".

2. Given in a spherical triangle, one side == 54°, a second

side rz= 22°, the angle opposite the second side = 12°
; to

solve the triangle.

Am. The third side — 73° 14' 29", or = 33° 32' 59".

One angle = 26° 40' 49", or = 153° 19' 11".

The third angle = 147° 53' 51", or = 17° 51' 43".

63. Problem. To solve a spherical triangle, when
two angles and a side opposite one of them are given.

[B. p. 438.]
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Solution, Let ABC (figs. 32 and 33.) be the triangle, A
and C the given angles, and a the given side.

From B let fall on AC the perpendicular BP. This per-

pendicular must fall within the triangle if A and C are either

both obtuse or both acute ; but it falls without, if one is obtuse

and the other acute.

First PC may be found by (261).

Secondly, To find AP. If, in the triangle PBC, PC is

the middle part, co. C and PB are the adjacent parts ; and if,

in the triangle ABP, AP is the middle part, co. BAP and

BP are the adjacent parts. Hence, by Bowditch's Rules,

cotan. C : cotan. BAP = sin. PC : sin. AP. (267)

Thirdly. To find b. We have

(fig. 32.) b = PC+ AP, '

'

(268)

(fig. 33.) b = PC— AP. (269)

Fourthly, c and B are found by the proportion

sin. A : sin. a = sin. C : sin. c, (270)

sin. a : sin.A = sin. b : sin.jB. (271)

64. Scholium. Either value of AP, given by (267), may be

used, and there will be two different triangles solving the

problem, except when AP -\- PC (fig. 32.) is greater than

180°, or PC (fig. 33.) is less than AP. It may be that both

values of AP satisfy the conditions of the problem, or that

only one value satisfies them, or that neither value does ; in

which last case the problem is impossible.

15*
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Two angles and an opposite side given.

Of the values of c, determined by (270), the true value must
be ascertained from the right triangle ABP by§ 12; or since

PB and C are both acute or both obtuse at the same time ; it

follows, from § 12, that when C and AP are both acute or

both obtuse, that c is acute ; but when one of them is obtuse

and the other acute, c is obtuse.

From the two values of B (271), the true value must be

selected by means of the rules of § 45.

65. Scholium. The problem is impossible, by Geometry,

when A differs more from 90° than does C, and when at

the same time one of the two quantities a and A is acute,

while the other is obtuse. This case is precisely the same as

the impossible case of § 61.

66. Examples.

\,
1. Given in a spherical triangle, one angle ±= 95°, a second

angle — 104°, and the side opposite the first angle z= 138°
;

to solve the triangle.

Solution. By (261),

C = 104° cos. 9.38368 n.

a 5= 138° tang. 9.95444 n.

PC z= 12° 17' 20" tang. 9.33812

By (267),

C= 104° cotan. (ar.co.) 0.60323 n,

PC =± 12° 17' 20

"

sin. 9.32802

BAP- 95° cotan. 8.94195 n,

AP s= 4° 16' 59" sin. 8.87320
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By (268),

b = 12° 17' 20"+ 4° 16' 59' = 16° 34' 19".

By (270),

A = 95° sin. (ar.co.) 10.00166

a = 138° sin. 9.82551

C= 104° sin. 9.98690

c = 139° 19' 40" sin. 9.81407

By (271),

a = 138° sin. (ar.co.) 10.17449

A= 95° sin. 9.99834

b = 16° 34' 19" sin. 9.45518

B = 25° 7' 38" sin. 9.62801

Again, by (269),

b = 12° 17' 20" — 4° 16' 59" = 7° 0' 21"

c = 180° — 139° 19' 40" = 40° 40' 20".

By (271),

a = 138° sin. (ar. co.) 10.17449

A— 95° sin. 9.99834

b= 7° 021" sin. 9.08623

B=z 10° 27' 42" sin. 9.25906

Ans. b ss 16° 34' 19" or = 7° 0' 21"

c = 139° 19' 40" or = 40° 40' 20"

B = 25° 7' 38" or = 10° 27' 42".
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2. Given in a spherical triangle, one angle = 104°, a second

angle == 95°, and the side opposite the first angle = 138°
; to

solve the triangle.

Ans. The two sides are 17° 22' 13", and 136° 36' 27".

The other angle is 25° 39' 9".

67. Problem. To solve a spherical triangle, when its

three sides are given. #

Solution. Equation (248) gives, by transposition and di-

vision,

-, cos. c — cos. a cos. b igj*^
COS. C s= : :

-
, (272)

sin. a sin. b
'

whence the value of the angle C may be calculated, and in

the same way either of the other angles.

68. Corollary. An equation, more easy for calculation by

logarithms, may be obtained from (249), which gives, by

transposition and division,

3 (cos. $ CY =
«~ '-<"; <«+*).

(273)v ' sm. a sin b '

Now, letting s denote half the sum of the sides, or

s = i(a + b + c); (274)

if we make in (35)

M=i(a + b + c)=,s,

N= % (a-\-b — c) = s — c;

we have

M + N = a + b,

M—N= c;



§ 70.] SPHERICAL OBLIQUE TRIANGLES. 177

The three sides given.

and (35) becomes

cos. c — cos. (a -j- b) = 2 sin. s sin. (s — c)
;

which, substituted in (273), gives

2 (cos. i Cy = »*»;»«M' --**?;
(275)7

sin. a sin. o

and

cos^n̂ £&% ^
69. Corollary. The angles .4 and JB may be found by the

two following equations, which are easily deduced from (276),

/sin. 5 sin. (s— a)\co,^ =V( sm.6sin.T^)' %&

\ sin. a sin. c / v
cos,

70. Corollary. Another equation, equally simple in calcula-

tion, can be obtained from (250), which gives, by transposition

and division,

cos. (a — 6) — cos. a cos. b -j- sin. a sin 6,

which, substituted in the numerator of (250), gives

2 (sin . j cy - cos. (.-6) -cos.,
v 2 y

sin. a sin. 6
' v y

whence C can be found by Table XXIII.

71. Corollary. If, in (35), we make

M = | (a — 6 + c) = s — 6,

iV=£(— a -|- & -{- c ) = *— a,
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we have

M + N = c,

M—N= a — b,

and (35) becomes

cos. (a — b) — cos. c = 2 sin. (5 — a) sin. (5 — b) ;

which, substituted in (279), gives

2(sin.£C)3=
2sin.(s- fl)sin(5-6j

v 2
' sin. a sin. 6

v
'

and

sin. |C=V P' (ff*)Tf^*)

fr (281)2 ^ \ sin. a sin. b )

72. Corollary. In the same way we might deduce the fol-

lowing equations

;

sin. i A = v(^.(s-b) sin, (s-c)^
2 ™ \ sin. 6 sin. c /

sin. X B = v /!in_(^-«)sin.(s- C)V

\ sin. a sin. c /

73. Corollary. The quotient of (282), divided by (277), is

°y (7),

tang. J4*=
S

-N4 = V /
sin-^- 6

)
s

;

n -( s -i)\, (284)
cos. £ A \ sm. 5 sm. (s— a) /

In the same way,

n ./sin. (s— a) sin. (s— c)\ /nDn
tang. A B =z \/( ^ J--,—^-r

—

'- I , (285)5 2 ^\ sin. s sin. (s— b) /
v J
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74. Examples.

I. Given in the spherical triangle ABC the three sides

equal to 46°, 72°, and 68°
; to solve the triangle.

Solution. I. By (277), by (278), by (279),

a=46°sin. (ar.co.)10.14307(ar.co.)10.14307

6=72°sin. (ar.co.) 10.02179 (ar.co.)10.02179

c=68° sin. (ar.co.) 10.03283 (ar.co.) 10.03283

5=93° sin. 9.99940 9.99940 9.99940

s-a=47°sin. 9.86413

s-6=21°sin. 9.55433

s-c=25° sin.

2)

9.62595

19.91815 2)19.72963 2)19.79021

cos. 9.95908 9.86482 9.89511

} A = 24° 29', £ B = 42° 54', $ C = 38° 14 / 18"

;

Ans. A = 48° 58', B = 85° 48', C = 76° 28' 56".

II. By Table XXIII and equation (279),

a— b = 26° N. cos. 89879

c = 68° N. cos. ,37461

52418

a = 46° .

b = 72°

C=z 5*5*55* = 76°28 / 45 //

log. 4.71948

sin. (ar.co.) 0.14307

sin. (ar.co.) 0.02179

log. Ris. 4.88434
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2. Given in a spherical triangle the three sides equal to 3°,

4°, and 5° ; to solve the triangle.

Ans. The three angles are 36° 54', 53° 10', and 90° 2'.

75. Neper obtained two theorems for the solution of

a spherical triangle, when a side and the two adjacent

angles are given, by which the two sides can be calcu-

lated without the necessity of calculating the third

angle. These theorems, which are given in § 78 and

79, can be obtained from equations (284-286) by the

assistance of the following lemmas.

76. Lemma. If we have the equation

tang. M x

tang. N y'

we can deduce from it the following equation,

sin. (M+ N) __ x+ y
sin. (M— N) T x— y'

Proof. We have from (7)

sin. M . ,_ sin. N
XdLiciv.Mz=. —

f
and tang. iV = — :5

- cos. if'
s

cos.^V'

which, substituted in (287), give

sin. M cos. N x

cos. M sin. N y

This equation is the same as the proportion

sin. Mcos. N : cos. if sin. N = x : y ;

hence, by the theory of proportions,

(287)

(288)
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sin.M cos. N+ cos. M sin. N : sin. M cos. N
—- cos. M sin. iV =± x -\- y : a; — y,

or, by (26) and (27),

sin. {M-\- N) : sin. (IT— 2V) z= x+ y : a;— y

;

which may be written in the form of an equation, as in (288).

77. Lemma. If we have the equation

tang. i*f tang. iV = -; (289)

we can deduce from it the equation

cos.
(
M -f- N) __ y— x

cos. (M — N) *~"
y-\- x

Proof. We have, by (289) and (7),

sin. M sin. N x

cos.M cos. N y

This equation is the same as the proportion

cos. M cos. N : sin. M sin. N =. y : x
\

hence, by the theory of proportions,

cos. M cos. N— sin. M sin. N : cos. M cos. N
-\- sin. M sin. iV = y — x \x -\- y,

or, by (28) and (29),

cos. (ilf+ iV) : cos. (iKf— N) =z y — x\y + x%

which may be written as in (290).

78. Theorem, The sine of half the sum of two angles

of a spherical triangle is to the sine of half their differ -

ence
7
as the tangent of half the side to which they are

16



(292)
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both adjacent is to the tangent of half the difference of

the other two sides ; that is
;
in the spherical triangle

ABC (figs. 32 and 33.),

sin.J (A+C) : sin. £ (A—C)= tang. J b : tang. \ {a—c). (291)

Proof The quotient of (284), divided by (286) is, by an

easy reduction,

tang, i A sin. (s — c)

tang. J C sin. (s — a)

Hence, by § 76,

sin. £ (A + C) sin. (5 — c) -f- sin. (s— a)

sin. %(A — C) sin. (s — c)— sin. (s — a)'

If we make in equation (40)

A =z s — c =z J (a -f- b — c),

B = s — a = i(— a + b + c);

we have

A + B = b,

A — B — a — c;

and (40) becomes

sin. (s — c) 4- sin. (s — a) _ tang. £ b

sin. (s — c) — sin. (s — a) tang.£(a

—

c)'

This equation, substituted in the second member of (293),

gives

sin, j (A + C) _ tang. | 6

sin. J (A — C) ~ tang. J (a— c)'
V ;

which is the same as (291).

79. Theorem. The cosine of half the sum of two

angles of a spherical triangle is to the cosine of half
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their difference, as the tangent of half the side to which

they are both adjacent is to the tangent of half the sum

of the other two sides ; that is, in the spherical triangle

iiflC(figs. 32 and 33.),

cos.i(A+C):coa.£(A—C)— tang.^-6 :tang. J(«+ c). (295)

Proof. The product of (284) and (286) is, by a simple re-

duction,

„ sin. (s— b)
tang, i 4;tang. £ C= - ^ g

J

hence, by § 77,

cos. £ (A -f- C ) sin. s— sin. (s — b)

cos. £ (A — C) sin. 5 -\- sin. (s — b)

If in equation (40) inverted we make

A = s = i (a + b + c),

we have

A + JB r= a + c,

4 — J3 = 6
;

and (40) becomes

sin. s — sin. (s — b) tang. J b

sin. 5 -)- sin. (s — b) tang. £ (a-(-c)"

This equation, substituted in (296), gives

cos.^(A + C) __ tang, j b

cos. £ (A — C) tang, ^-(a-f-c)'

which is the same as (295).

(296)

(297)
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80. Scholium. In using (291) and (295), the signs of the

terms must be attended to by means- of PL Trig. § 61.

81. Examples.

1. Given in a spherical triangle two angles z= 158°, and :

98°, and the included side ar 144° ; to find the other sides.

Solution. By (291),

} (A + C) = 128° sin. (ar.co.) 10.10347

t(A — C)= 30° sin. 9-69897

i b =12° tang. 0.48822

£ (a — c) == 62° 53' 1" tang. 0.29066

By (295),

£ (A + C) == 128° cos. (ar. co.) 10.21066 n.

%(A—C)=z 30° cos. 9.93753

i b = 72° tang. 0.48822

i (a + c) =z 103° 0' 25" tang. 0.63641 n.

Ans. a = 165° 53' 26",

c = 40° 7' 24".

2. Given in a spherical triangle two angles zs 170°, and :

2°, and the included side — 92° ; to find the other sides,

Ans. a == 103° 6' 30",

c = 11° 1730".
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Three angles given.

82. Problem. To solve a spherical triangle, when its

three angles are given.

Solution. If A, B, C are the angles of the given triangle,

and a, b, c its sides 180° — A, 180° — B
y
180°— C are the

sides of the polar triangle, and 180° — a, 180° — 6, 180°—c

the angles of the polar triangle, the sides are then given in the

polar triangle ; to find the angles. For this purpose we may

use the formulas of the preceding problem.

83. Corollary. Applying (272) to the polar triangle gives

cos. C+ cos. A and B /nA0 .

COS. C — rJ—
/
:

: ^ . (298)
sin. A sin. B

84. Corollary. Equations (276-278) give, for the polar tri-

angle, if we put

8 = i (A + B + C), (299)

if we use (71 and 72),

,/— cos. S cos. (S— A)\ /rt/w, v

sin. i a - s/ ( r n .-^ L
1 , (3002

\ sin. B sin. C J

•
i i //— cos- S cos. (S—B) \ /qm ,sin. i b =V( : 7——?t I? (301 )2

\ sin. A sin. C /

sin. ic = v| : t-^td I- (302 )2
\ sin. A sin. I* /

85. Corollary. Equations (281-283), applied to the polar

triangle, give

,/cos. (S—B)cos.(S— C)\
cos. i a = \/( Wl—ET^T^ '

I > (
303 )2

\ sm. B sin. C /

,/cos. (#—yl)cos.(#—• C)\ /OAy4X
cos. J 6 = s/ 1 i^ /-.—

^

- 1 , (304)2
\ sin. A sin. C /

16*
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COS. i c = vC°
5 - {8-A

l

C0S^- B)
). (305)2 v

\ sm. A sm. B t

86. Corollary. Equations (284-286), applied to the polar

triangle, give

// — cos.tfcos. (S— A) \

,/ — cos. S cos. (S— B) \ ,OAW v

taQg- * h =fi^J^^^rcg • <
307

>

,/ — cos. #cos. (S— C) \ /OAO v

tang, i c = V(
C0S- is_ AT<tis B̂) y (

308
)

87. Corollary. Equation (273), applied to the polar tri-

angle, is

~/. vo — cos. C— cos. (A4-B) /r»™v
2 sin. £ c)* H: r— A .

v

p ^ '
, (309

v * ' sin. ^1 sin. B
which may be used like equation (279).

88. Example.

Given in the spherical triangle ABC, the three angles equal

to 89°, 5°, and 88°
; to solve the triangle.

Ans. The three sides are 53° 10', 4°, and 53° 8'.

89. Theorem. The sine of half the sum of two sides

of a spherical triangle is to the tangent of half their

difference, as the cotangent of half the included angle

is to the tangent of half the difference of the other two

angles, that is, in ABC (figs. 32 and 33.),

sin.|(a
-f-

c) : sin. £(a—c)=z cotan. J B : tang. £(A— C) (310)
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Proof. This theorem is at once obtained by applying § 78

to the polar triangle.

90. Theorem. The cosine of half the sum of two sides

of a triangle is to the cosine of half their difference, as

the cotangent of half the included angle is to the tangent

of half the sum of the other two angles , or in (figs. 32

and 33.),

cos.£(a-\-c( : cos.4-(ez— c)— cota.n.£B :tzng.£(A-\-C). (311)

Proof. This theorem is at once obtained by applying § 79

to the polar triangle

91. Corollary. These two theorems, similar to <§> 78

and 79, were given by Neper for the solution of the case,

in which two sides and the included angle are given.

By means of them the other two angles can be found

without the necessity of calculating the third side. In

using them regard must be had to the signs of the terms

by means of PI. Trig. § 61.

92. Examples.

1. Given in a spherical triangle two sides z= 149°, and
— 49°, and the included angle = 88° ; to find the other an-

gles.

Solution. By § 89,

£(a+ c) = 99° sin. (ar. co.) 10.00538

£ (a — c) = 50° sin. 9.88425

£B z=U° cotan. 0.01516

£ {A— C) — 38° 46' 10" tang. 9.90479
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By § 90,

£ (a + c ) = "° cos. ar. co.) 10.80567 n.

i(a— c) = 50° cos. 9.80807

£B = 44° cotan. 0.01516

i (A+ C) = 103° 12' 31" tang. 0.62890 n.

Arts. A ~ 141° 59' 41",

Cz: 64° 27' 21".

2. Given in a spherical triangle two sides ca 13°, and = 9°,

and the included angle a: 176°
; to find the other angles.

Arts. 2° 24' 7", and 1° 40' 13".
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SPHERICAL ASTRONOMY.

CHAPTER I.

THE CELESTIAL SPHERE AND ITS CIRCLES.

1. Astronomy is the science which treats of the

heavenly bodies.

2. Mathematical Astronomy is the science which

treats of the positions and motions of the heavenly

bodies.

The elements of position of a heavenly body are (Geo. § 8)

distance and direction.

3. Spherical Astronomy regards only one of the ele-

ments of position, namely, direction, and usually refers

all directions to the centre of the earth.

4. In spherical astronomy all the stars may, then, be

regarded as at the same distance from the earth's centre

upon the surface of a sphere, which is called the celes-

tial sphere.

Upon this imaginary sphere are supposed to be drawn vari-

ous circles, which are divided into the well known classes of

great and small circles. [B. p. 47.]
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Secondaries. Declination. Hour circles.

" All angular distances on the surface of the sphere, to an

eye at the centre, are measured by arcs of great circles."

[B. p. 48.]

5. " Secondaries to a great circle are great circles

which pass through its poles, and are consequently per-

pendicular to it." [B. p. 48.]

6. "If the plane of the terrestrial equator be pro-

duced to the celestial sphere, it marks out a circle called

the celestial equator ; and if the axis of the earth be

produced in like manner, it becomes the axis of the

celestial sphere ; and the points of the heavens, to

which it is produced, are called the poles, being the

poles of the celestial equator."

" The star nearest to each pole is called the pole

star." [B. p. 48.]

7. " Secondaries to the celestial equator are called

circles of declination; of these 24, which divide the

equator into equal parts of 15° each, are called hour

circles"

" Small circles, parallel to the celestial equator, are

called parallels of declination." [B. p. 48.]

The parallels of declination correspond, therefore, to the

terrestrial parallels of latitude, and the circles of declination

to the terrestrial meridians. A certain point of the celestial

equator has been fixed by astronomers, and is called the vernal

equinox. The circle of declination, which passes through the

vernal equinox, bears the same relation to other circles of
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Right ascension. Horizon.

declination, which the first meridian does to other terrestrial

meridians.

8. " The declination of a star is its angular distance

from the celestial equator," measured upon its circle of

declination. [B. p. 49.]

9. The right ascension of a star is the arc of the

equator intercepted between its circle of declination

and the vernal equinox. [B. p. 49.]

Right ascension is either estimated in degrees, minutes, &c.

from 0° to 360° ; or in hours, minutes, &,c. of time, 15 de-

grees being allowed for each hour, as in Sph. Trig. § 3.

The positions of the stars are completely determined upon

the celestial sphere, when their right ascensions and declina-

tions are known. Catalogues of the stars have accordingly

been given, containing their right ascensions and declina-

tions. [B. Table viii. p. 80.]

10. " The sensible horizon is that circle in the heav-

ens, whose plane touches the earth at the spectator."

" The rational horizon is a great circle of the celes-

tial sphere parallel to the sensible horizon." [B. p. 48.]

11. The radius, which is drawn to the observer, is

called the vertical line.

The point, where the vertical line meets the celestial

sphere above the observer, is called the zenith ; the op-

posite point, where this line meets the sphere below the

observer, is called the nadir.

17
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Hence the vertical line is a radius of the celestial sphere

perpendicular to the horizon ; and the zenith and nadir are

the poles of the horizon. [B. p. 48.]

12. Circles whose planes pass through the vertical

line are called vertical circles. [B. p. 48.]

The vertical circles are secondaries to the horizon.

13. The vertical circle at any place, which is also a

circle of declination, is called the celestial meridian of

that place. [B. p. 48.]

The plane of the celestial meridian of a place is the same

with that of the terrestrial meridian.

14. The points, where the celestial meridian cuts

the horizon, are called the north and south points.

[B. p. 48.]

The north point corresponds to the north pole, and the south

point to the south pole.

15. The vertical circle, which is perpendicular to

the meridian, is called the prime vertical. [B. p. 48.]

16. The points, where the prime vertical cuts the

horizon, are called the east and west points. [B. p. 48.]

"To an observer, whose face is directed towards the south,

the east point is to his left hand, and the west to his right

hand. Hence the east and west points are 90° distant from

the north and south. These four are called the cardinal

points."
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Altitude. Azimuth.

H The meridian of any place divides the heavens into two

hemispheres, lying to the east and west; that lying to the east

is called the eastern hemisphere, and the other the western

hemisphere."

17. The altitude of a star is its angular distance from

the horizon, measured upon the vertical circle passing

through the star. [B, p. 48.]

18. The azimuth of a star is the arc of the horizon

intercepted between its vertical circle and the north or

south point. [B. p. 48.]

A star may be found without difficulty, when its altitude

and azimuth are known. But these elements of position are

constantly varying.
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19. " Stars are distinguished into two kinds, fixed

and wandering." [H. p. 15.

J

Most of the stars are fixed, thai is, retain constantly almost

the same relative position ; so that the same celestial globes

and maps continue to be accurate representations of the fir-

mament for many years. This is a fact of fundamental impor-

tance, and furnishes the fixed points for arriving at a complete

knowledge of the celestial motions. Small changes of position

have, indeed, been detected even in the fixed stars, as will be

shown in tho course of this treatise; but these changes are

too small to disturb the general fact ; they are, indeed, too

small ever to have been detected, if the positions of the stars

had been subject to great variations.

20. Of the wandering stars there are eleven, which

are called planets. They are Mercury ( g )> Venus ( ? ),

the Earth (0), Mars ( $ ), Vesta (g), Juno ($ ), Pal-

las ($), Ceres (?), Jupiter (#), Saturn (h), and

Cranus ( * ). [B. p. 45.]

21. For the sake of remembering the stars with

greater ease, they have been divided into groups called

constellations ; and to uive distinctness to the constella-

tions, they have been supposed to be circumscribed by
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Diurnal motion.

the outlines of some figure which they were imagined

to resemble. [B. p. 45.J

The stars have also been distinguished according to

their brilliancy, as of the^rs^, second, &c. magnitude.

Proper names have been given to the constellations

and to the most remarkable stars.

The catalogues and the maps of the stars are now so accu-

rate, that no new star could appear without being detected

;

and any change in the place of any of the larger stars would

be immediately discovered.

22. All the stars appear to have a common motion,

by which they are carried round the earth from east to

west in 24 hours. This rotation of the heavens, or of

the celestial sphere, is called the diurnal motion.

By its diurnal motion, the celestial sphere rotates, with the

most perfect uniformity, about its axis. The pole star would,

therefore, if it were exactly at the pole, remain stationary
;

but since it is not exactly at the pole, it revolves in a very

small parallel of declination about the stationary pole.

Any star in the equator revolves in the plane of the equator,

and all other stars revolve in the planes of the parallels of

declination in which they are situated.

If O (fig. 34.) is the place of the observer, NESW his

horizon, Z his zenith, P and P' the poles, the star which is

at the distance from P,

PM = PM!

will appear to describe the circumference MH' M'H. It will

rise in the east at H and set at H', if the distance PM'
17*
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Sideral time.

from the pole is greater than the altitude PN of the pole.

But if its distance from the pole

PL == PL'

is less than PN, the star will not set, but will describe a

circle above the horizon ; and if its distance from the pole

PG = PG<

is greater than the greatest distance PS from the pole to the

horizon, the star will never rise so as to be seen by the ob-

server at O, but will describe a circle below the horizon.

23. The time which it takes a star to pass from any

position round again to the same position is called a

sideral day, that is, literally, a star-day. This day is

divided into 24 hours, and clocks regulated to this time

are said to denote sideral time. [B. p. 147.]

24. Each point of the celestial equator passes the

meridian once in a sideral day ; and the arc contained

between two hour circles passes it in a sideral hour.

The sideral time, therefore, which has elapsed since

the vernal equinox was upon the equator, is equal to

the right ascension of the meridian expressed in time.

[B. p. 208.]

The meridian changes its right ascension at each instant,

precisely as if the celestial sphere were stationary, while the

observer, with his meridian and zenith, is carried uniformly

round the earth's centre from west to east once in a sideral

day.
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Hour angle. Amplitude.

25. The angle MPB (fig. 35.), which the circle of

declination of the star makes with the meridian, is

called its hour angle.

While the star moves from the point M in the meridian to

the point B with an uniform motion, the arc MP is carried

to the position PB, and the angle MPB is described with an

uniform motion. This angle converted into time is, then, the

sideral time since the passage of the star over the meridian.

26. Corollary. The difference of the right ascensions of the

star and of the meridian is the hour angle of the star.

27. The distance of a star from the east or west

points of the meridian, at the time of its rising or

setting, is the amplitude of the star. [B. p. 48.]

28. ^Problem. To find the altitude and azimuth of a

star , when its declination and hour angle are known,

and also the latitude of the place.

Solution. If P (fig. 35.) is the pole, Z the zenith, and 3
the star ; we have

PZ — polar dist. of zenith == co. latitude = 90°— L,

PN = 90° — PZ—L,
PB = polar dist. of star = p,

= co. declination of star, when it is on the same side

of the equator with the pole.

= 90° -)- declination of star, when it is on the differ-

ent side of the equator from the pole.

= 90° q= D,
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To find a star's altitude and azimuth.

ZB = zenith dist. of star = z,

== co. altitude of star, when it is above the horizon.

= 90°
-f- depression of star, when it is below the

horizon.

ZPB = #'s hour angle = h,

PZB = azimuth of star counted from the direction of the

elevated pole.

= a = azimuth, when less than 90°,

= 180° — azimuth, when greater than 90°.

There are, then, given in the spherical triangle PZB, the two

sides PZ and PB, and the included angle ZPB ; so that

the side BZ and the angle PZB can be calculated by Sph.

Trig. § 44.

If we let fall the perpendicular BC upon PZ>

tang.PC— cos. h tang. (90° =pD)==p cos. A cotan. D (312)

CZ=PZ— PC— 90° — (L + PC)

or —PC—PZ=(L + PC)— 90°. (313)

Hence, by (241),

cos. PC : sin. (L + PC) z= d= sin. Z> : cos. z
; (314)

in which formulas the upper sign is used when the star is upon

the same side of the equator with the elevated pole, that is,

when D and L are of the same name ; and, by (242),

sin. PC : cos. (L + PC) — cotan. h : cotan. a. (315)

29. Corollary, When the altitude and azimuth are both to

be found, the calculation by the above method is as short as
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To find a star's altitude.

by any other; but when, as is usually the case, the altitude

only is required, the following method is preferable.

We have

PZ+ PB = 180° — L =f D = 180° — (L± D)

PB — PZ=^D + L = L^D)*,

whence, by (249) and (250),

cos.z=— cos. (L^zD)-{-2cos.Dcos.L(cos.^h) 2 (316)

cos.z= cos.(Z=pZ>)— 2cos. ZJcos. Z,(sin. J/*)
2

, (317)

which may be used at once, and {317) may be calculated by

the aid of the column of Rising in Table XXIII. The rule

obtained from (317) is the same with that on p. 250 of the

Navigator, remembering that when the star is above the hori-

zon

cos. z s= sin. ^c's alt. (318)

But when the star is below the horizon

cos. z z= — sin. sjc's depression. (310)

30. Corollary. If the given hour angle is 6h = 90°, the

problem is at once reduced to the solution of a right triangle.

We in this case have, by Napier's Rules,

cos, z == sin. L cos. p,

or sin. ^c's alt. z= ± sin. L sin. D (320)

cotan. a z= cos. L cotan. p

cotan. sfc's azimuth == dc= cos. L tang. D. (321)

The upper sign is to be used in formulas (320) and (321),

when the declination is of the same name with the latitude;

otherwise the lower sign. In the former case, therefore, the
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star is above the horizon when its hour angle is six hours, and

on the same side of the prime vertical with the elevated pole
;

but, in the latter case, it is below the horizon, and on the same

side of the prime vertical with the depressed pole.

31. Corollary, If the star is in the celestial equator, as in

(fig. 36.), we have in the right triangle BZQ
}

BQ == BPQ — h

ZQ — L

QZB = 180° — a,

whence cos. z t= cos. L cos. h,

or sin. ^c's alt. = cos. L cos. h (322)

cotan. (180°— a) s± sin. L cotan. ft,

or cotan. a = — sin. L cotan. h, (323)

Hence, if the hour angle is less than six hours, the star which

moves in the celestial equator is above the horizon, and on the

same side of the prime vertical with the depressed pole ; but

if the hour angle is greater than six hours, this star is be-

low the horizon, and on the same side of the prime vertical

with the elevated pole.

32. Corollary. If the place is at the equator, as in (fig. 37.),

the celestial equator ZE is the prime vertical, so that if the

hour circle PB is produced to C, we have in the right tri-

angle ZBC
ZC— ZPBz= h

BZC = 90° — a

BC— D,
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whence cos. z = cos. D cos. h,

or sin. 2(c's alt. — cos. D cos. h (324)

cotan. (90° — a) txz sin. h cotan. D,

or tang, a == sin. h cotan. D ; (325)

so that the star is above the horizon when the hour angle is

less than six hours, and below the horizon when the hour

angle is greater than six hours.

33. Examples.

1. Find the altitude and azimuth of Aldebaran to an ob-

server at Boston, in the year 1830, when the hour angle of this

star is 3* 25m 12s
.

Solution. We find by tables VIII and LIV

D— 16° 11' N. L — 42°21'N.

Hence

h = 3* 25 m 12* log. col. Ris. 4.57375

L ts 42° 21' cos. 9.86867

D=i 16° 11 ; cos. 9.98244

26599 4.42486

D= 26° 10 ; nat. cos. 89752

alt. — 39° 10' nat. sin. 63153 sec. 10.11052

h — 51° 18' sin. 9.89233

D. cos. 9.98244

azimuth from South = 75° 10' sin. 9.98529
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2. Find the altitude and azimuth of Aldebaran at Boston*

in the year 1830, six hours after it has passed the meridian.

Solution. By formulas (320) and (321),

L = 42° 21' sin. 9.82844 cos. 9.86867

D = 16° IV sin. 9.44516 tang. 9.46271

alt. = 10° 49' sin. 9.27360

azimuth from North= 77° 54' cotan. 9.33138

3. Find the altitude and azimuth of a star in the celestial

equator, to an observer at Boston, when the hour angle of the

star is 3*25™ 12 s
.

Solution. By formulas (322) and (323),

L = 42° 21' cos. 9.86867 sin. 9.82844

h z= 51° 18' cos. 9.79605 cotan. 9.90371

alt. = 27° 31 7 sin. 9.66472

azimuth from South = 61° 39' cotan. 9.73215

4. Find the altitude and azimuth of Aldebaran to an ob-

server at the equator, in the year 1830, when the hour angle

of the star is 3*25™ 12 s
.

Solution. By formulas (324) and (325),

Z>z=16°ll' cos. 9.98244 cotan. 10.53729

h = 51° 18' cos. 9.79605 cotan. 9.90371

alt. = 36° 54' sin. 9.77849

azimuth from North = 70° 5' tang. 10.44100
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5. Find the altitude and azimuth of Fomalhaut to an ob-

server at Boston, in the year 1840, when its hour angle is

2*3^20*.

Ans. Its altitude . . =11° 51'.

Its azimuth from the South == 15° 24'.

6. Find the altitude and azimuth of Dubhe to an observer

at Boston, in the year 1840, when its hour angle is 9 h 30 m .

Ans. Its altitude . . — 19° 14'.

Its azimuth from the North =z 17° 15'.

7. Find the altitude and azimuth of Fomalhaut to an ob-

server at Boston, in the year 1840, when its hour angle is 6\

Ans. Its depression below the horizon t=z 19° 58'.

Its azimuth from the South = 38° 31'.

8. Find the altitude and azimuth of Dubhe to an observer

at Boston, in the year 1840, when its hour angle is 6\

Ans. Its altitude . . = 36° 44'.

Its azimuth from the North = 69° 3'.

9. Find the altitude and azimuth of a star in the celestial

equator to an observer at Stockholm, when its hour angle is

2*3"' 20*.

Ans. Its altitude . . == 25° 58'.

Its azimuth from the South = 34° 45'.

10. Find the altitude and azimuth of a star in the celestial

18
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equator, to an observer at Stockholm, when the hour angle is

9* 30 m .

Ans. Its depression below the horizon = 23° 51'.

Its azimuth from the North = 41° 44'.

11. Find the altitude and azimuth of Fomalhaut, to an ob-

server at the equator, in the year 1840, when its hour angle

is2*3 w 20*.

Ans. Its altitude . .
— 47° 45'.

Its azimuth from the South = 41° 4'.

12. Find the altitude and azimuth [of Dubhe, to an observ-

er at the equator, in the year 1840, when its hour angle is

9*30 m
.

Ans. Its depression below the horizon = 21° 24'.

Its azimuth from the North — 17° 30'.

34. In the triangle ZPB (fig. 2.) other parts might

be given instead of the two sides ZP, PB, and the

included angle P, and the triangle might be resolved.

Of the problems thus derived, we shall only, for the

present, consider two cases.

35. Problem. To find a given star's hour angle and

altitude, when it is upon the prime vertical.

Solution. The angle PZB is, in this case, a right angle,

and if we use the preceding notation, we have

cos. 7i zc cotan. L cotan. p — ± cotan. L tang. D (326)

cos. z z=. cos. p cosec. L,

or sin. &'s alt. = db sin. D cosec. L ; (327)
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so that when the declination and latitude are of the same name,

the hour angle is less than 6 hours, and the star is above the

horizon ; but when the declination and latitude are of differ-

ent names, the hour angle is greater than 6 hours, and the

star is below the horizon.

36. Scholium. The problem is, by Sph. Trig. § 27, impos-

sible, when the declination is greater than the latitude; so

that, in this case, the star is never exactly east or west of the

observer.

37. Scholium. The problem is, by Sph. Trig. § 28, indeter-

minate, when the latitude and declination are both equal to

zero ; so that, in this case, the star is always upon the prime

vertical.

38. Examples.

1. Find the hour angle and altitude of Aldebaran, when it

is exactly east or west of an observer at Boston, in the year

1840.

Ans. The hour angle = 4 A 45 w 44*.

The altitude m 24° 26'.

2. Find the hour angle and altitude of Fomalhaut, when it

is exactly east or west of an observer at Boston, in the year

1840.

Ans. The hour angle . . s= 8 h 40 m 50'.

The depression below the horizon = 48° 49'.

3. Find the hour angle and altitude of Dubhe, when it is
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exactly east or west of an observer at Boston, in the year

1840.

Arts. Dubhe is never upon the prime vertical of Boston.

4. Find the hour angle and altitude of Canopus, when it is

exactly east or west of an observer at Boston, in the year

1840.

Ans. Canopus is never upon the prime vertical of Boston.

39. Problem. To find the hour angle and amplitude

of a star, when it is in the horizon.

Solution. In this case the side ZB (fig. 35.) of the triangle

ZPB is 90°. The corresponding angle of the polar triangle

is, therefore, a right angle, and the polar triangle is a right

triangle, of which the other two angles are

180° — PZ — 180° — (90° — L) — 90° + L
y

and 180° — PB = 180° — (90° =p D) — 90° d= D.

The hypothenuse of the polar triangle is 180° — h, and the

leg, opposite the angle, 90° ± D, is 180° — a.

Hence, by Sph. Trig. § 40, and PI. Trig. § 60 and 62,

— cos. 7i = zh tang. L tang. Z>,

or cos. h =. =F tang. L tang. D (328)

— cos. a = ^p sin. D sec. L,

or cos. a = d= sin. D sec. L ; (329)

in which the upper sign is used when the latitude and declina-

tion have the same name, and the lower sign when they have

different names ; so that in the former case the hour angle is

greater than 6 hours, and the azimuth is counted from the
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direction of the elevated pole ; but in the latter case, the hour

angle is less than 6 hours, and the azimuth is counted from

the direction of the depressed pole. The amplitude is the

difference between the azimuth a and 90°. Hence

cos. ^c's azim. = sin. ^c's amp. = sin. D sec. L. (330)

40. Scholium. The problem is, by Sph. Trig. § 41, impos-

sible, when the sum of the declination and latitude is greater

than 90° ; so that, in this case, the star does not rise or set.

41. Examples.

1. Find the hour angle and amplitude of Aldebaran, when

it rises or sets, to an observer at Boston, in the year 1840.

Ans. The hour angle == 7 h
l
m 21*.

The amplitude = 22° 9' N.

2. Find the hour angle and amplitude of Fomalhaut, when

it rises or sets, to an observer at Boston, in the year 1840.

Ans. The hour angle = S h 5l m 18*.

The amplitude — 43° 19' S.

3. Find the hour angle and amplitude of Dubhe, when it

rises or sets, to an observer at Boston, in the year 1840.

Ans. Dubhe neither rises nor sets at Boston.

4. Find the hour angle and amplitude of Canopus, when it

rises or sets, to an observer at Boston, in the year 1840.

Ans. Canopus neither rises nor sets at Boston.

18*
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CHAPTER III.

THE MERIDIAN.

42. The intersection of the plane of the meridian

with that of the horizon is called the meridian line.

43. Problem. To determine the meridian line.

Solution. First Method. Stars obviously rise to their great-

est altitude in the plane of the meridian ; so that if their

progress could be traced with perfect accuracy, and the instant

of their rising to their greatest height be observed, the direc-

tion of the meridian line could be exactly determined. But

stars, when they are at their greatest height, change their

altitude so slowly, that this method is of but little practical

value.

Second Method. A star is evidently at equal altitudes when

it is at equal distances from the meridian on opposite sides of

it. If, therefore, the direction and altitude of a star are ob-

served before it comes to the meridian ; and if its direction is

also observed, when it has descended again to the same alti-

tude, after passing the meridian ; the horizontal line, which

bisects the angle of the two horizontal lines drawn in the

directions thus determined, is the meridian line.

Third Method. [B.p. 147.] The time which elapses between

the superior and inferior passage of a star over the meridian is

just half of a sideral day. If, then, a telescope were placed so as
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to revolve on a horizontal axis in the plane of the meridian, the

two intervals of time between three successive passages of a

star over the central wire, must be exactly equal. But if the

vertical plane of the telescope is not that of the meridian,

these two intervals will not be equal, and the position of the

telescope must be changed until they become equal.

Thus, if ZMmN (fig. 37.) is the plane of the meridian,

Z S s T that of the vertical circle described by the telescope,

MS WsmE the circle of declination described by the star

about the pole P; this star will be observed at the points S
and s instead of at the points M and m. Now the star de-

scribes the circle of declination with an uniform motion, and

therefore the arc SP moves uniformly with the star around

the pole, so that the angle SPM is proportional to the time

of its description; that is, the angle SP31, reduced to time,

denotes the sideral time of its description.

Let then

T = the sideral time of describing the arc SM
}

t = the sideral time of describing the arc 5 m,

I = interval from the observation at £ to that at s,

i == interval from the observation at s to that at S
}

<5 i = the difference of these two intervals
;

we have then, in sideral time,

I = 12h— T— t = 12h—
(
T+ t)

i = 12*+ T+ t = 12*+ (
T+ t

)

di=ri — I=:2(T+t); (331)

so that if T and t were equal to each other, and they are

nearly so in the case of the pole-star, we should have
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di = 4 T= 4t

that is, the time of describing the arc MS or m s is nearly one

quarter part of the difference between the intervals.

But the error of this result can be calculated without much

difficulty. For this purpose, let

L == the latitude of the place, = 90° — PZ,

p s=s the polar distance of the star == PS— P s,

a = the azimuth of ZS T = TN = TZN.

The arcs MS and m s are so small, that they do not differ

sensibly from the arcs of great circles drawn from S and s

perpendicular to ZPN.

If, then, in the two right triangles PSM and ZSM
f
PM

and ZM are the middle parts, SM, co. SZM, and co. SPM
are the adjacent parts, so that

sin. PM : sin. ZM = cotan. SPM : cotan. SZM
1 1

tang. SPM ' tang. SZM
= tang. SZM : tang. SPM.

But Z3I= ZP — PM= 90° — L —p
and the angles SZM and SPM are so small, that they are

sensibly proportional to their tangents, whence

sin. p : cos. (p + L) = a : SPM, (332)

or a : SPM =? sin. p : cos. p cos. L — sin. p sin. L

fats 1 : cotan. p cos. Z< — sin. L 9
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and if T is expressed in sideral hours

T. 15° ±= SPM— a cotan.p cos. L — a sin. L.

In like manner, we find

t . 15° = 5 Pm = a cotan. p cos. L -f- a sin. L.

Hence, by (331)

(T+ t) 15° = JJi.15° — 2« cotan.pcos. i

a cotan. p cos. L = £$i. 15°

T. 15° = ^ (52.15°— a sin. Z,

£.15° ±= | &\t# -f a sin. L

a = J (5 i . 15° tang. j9 sec. Z. (333)

T = £ <J £ — £ <5 « tang, p tang. X

£ = £ «J i -}- £ i? £ tang, p tang. L,

so that the correction is

I 3 i tang, p tang. L, (334)

which is to he added to the quarter interval at the lower tran-

sit ; and to be subtractedfrom the quarter interval at the upper

transit.

This correction is proportional to the quarter interval, so

that if it is computed for any supposed value of this interval,

it may be computed for any other interval by a simple propor-

tion. Now table A, page 151, of the Navigator, is the value

of this correction, when the interval is 1000s
. It may be

observed, that it is not necessary that this time should be

sideral time, because all the terms of the values of T and t

are expressed in the same time, which may be that of the

clock.
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The azimuth a is given in table B, [B. p. 151], and may be

computed from the formula (333). But the interval in the

formula is supposed to be sideral time, whereas the time of

the table is that called solar time, to which clocks are usually

regulated, and which is soon to be described ; all that need be

known for the present is, that an interval of sideral time is

reduced to solar time by table LII of the Navigator, or by the

formula

an interval of^solar time = q^^ (335)
an interval of sideral time

Fourth Method. [B. p. 149.] This method of determining

the meridian is by means of two known circumpolar stars,

which differ nearly 12 hours in right ascension. The upper

passage of one of these stars is to be observed, and the lower

passage of the other. Then any deviation in the plane of the

instrument from the meridian, will evidently produce contrary

effects upon the observed times of transit, exactly as in the

upper and lower transits of the same star. The time, which

elapses between the two observations, will differ from the time

which should elapse by the sum of the effects of the deviation

upon the two stars. In the use of this method, therefore, the

time of the clock must be known, so that it can readily be re-

duced to sideral time.

The deviations in the time of passage of a star, correspond-

ing to any azimuth, can be calculated by means of equation

(332). For this formula give for the time of describing the

arc SM
T. 15° e= a cos. (p -f- L) cosec. p,

or T — T\ a cos. (p -f- L) cosec. p ; (336)

which may be used if T is expressed in sideral seconds, and
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the arc a in seconds of space. But if T is expressed in solar

time we have, by (335),

T — 0.0664846 a cos. (p -f L) cosec. p. (337)

In the same way the value of t for an inferior passage is

found to be

t =3 0.0664846 a cos. (p — L) cosec. p. (338)

Now, since these values of T and t are proportional to the

azimuth a, their values may be computed for a given value of

the azimuth, as 1000", and arranged in a table like Table C,

p. 152, of the Navigator, and their values for any other azi-

muth can be obtained by a simple proportion.

Fifth Method. [B. p. 149.] This method consists in observ-

ing the transits of two stars, which differ but little in right

ascension. The error in the position of the telescope is, in

this case, equal to the difference in the errors of the observed

transits, instead of the sum, as in the preceding method.

44. In making calculations where angles are intro-

duced as factors, some labor, in reducing them to the

same denomination, is often saved by means of a table

of Proportional Logarithms, such as Table XXII of

the Navigator.

This table was particularly designed for reducing lunar dis-

tances, given in the Nautical Almanac, for every 3 hours

to any intermediate time. It contains, on this account, the

logarithm of the ratio of 3 hours to each angle expressed in

time ; that is, if A is the angle
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3^
Prop. log. A = log. ~= log.3ft— log.^Lz=log.l80m—log. A

A
— log. 10800 s — log. A, (339)

so that if A in the second member is reduced to seconds,

Prop. log. A — 4.03342 — log. A in seconds
; (340)

neglecting the right hand figure, so as to retain only four

decimal places. This agrees with the explanation of the table

in the Introduction to the Navigator ; and it is evident that it

is immaterial whether the angles, whose ratios are sought, are

given in time or in degrees, &c.

Suppose, now, that the logarithm of the ratio of two angles

is sought, A and a ; we have, evidently,

log. — == log. A — log. a 3= Prop. log. a— Pr. log. A
; (341

)

so that if this ratio, which we will denote by M„ were known,

and if a were known, A might be calculated by the formula

Prop. log. A — Prop. log. a — log. M
= Prop. log. a + (ar. co.) log. M; (342)

which is, therefore, the formula for calculating the value of A,

given by the equation

A — a M. (343)

Finally, the use of formula (342) is facilitated by remem-

bering that the arithmetical complements of the logarithms of

the sine, cosine, tangent, cotangent, secant, and cosecant of an

angle are respectively the logarithms of its cosecant, secant,

cotangent, tangent, cosine^ and sine.
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Tables A, B, C, [B. pp. 151 and 152.]

45. Examples.

1. Calculate the proportional logarithm of 0° 5' 45".

Solution; By (340), 4.03342

0° 5' 45" = 345". 2.53782

Prop. log. 5' 45" =z 1.4956

2. Calculate the corrections of tables A and B, [B. p. 151.],

as in table XXII, when the latitude is 42°, and the polar dis-

tance of the star 30°.

Solution. By means of proportional logarithms, and equations

(333) and (334),

£.1000* =z4 m 10* Prop. log. 1.6355 1.6355

L — 42° cotan. 10.0456 cos. 9.8711

30° cotan. 10.2386 10.2386

corr. A i= 130 s = 2 m 10* Pr. log. 1.9197

0.0664846 8.8227

corr. B=:48/ 41" Prop. log. 0.5679

3. Calculate the corrections of table C [B. p. 152.] for the

pole star and the latitude of 30a , when the polar distance of

this star is 1° 32' 37".

19
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Solution. By (337) and (338),

0.0G64846 8:82273

an 1000" 3.00000

p=l° 32' 37" cosec. 11.56964

p+L = 31° 32' 37" cos. 9.93058

p— L-— 28° 26' 22"

corr. C upper trans. = 2103 * 3.32295

corr. C lower trans. = 2170 s

8.82273

3.00000

11.56964

9.94414

3.33651

4. An observer at Boston in the year 1840, wishing to de-

termine his meridian line, observed three successive^transits of

p Cephei over the central vertical line of his transit instru-

ment, by means of a* clock regulated to solar time, and found

them to occur as follows ; the first upper transit at 7 h 45 m 28 s

P. M., the next inferior transit the next day at 7 h 41 m A.M.
the third transit at 7* 41* 32 s P. M. What were the times o f

the star's passing the meridian the second day? and wThat was

the azimuth error in the position of the instrument ?

Solution.

The first interval s= 19* 4l w— 7*45™ 28* = ll*55m 32*.

The second interval = 19* 41 OT 32s — 7* 41w = 12* m 32*.

Hence *i — 5 m — 300*.

Now L == 42° 21', D = 69° 52', p =z 20° 8'.

Hence, by tables A and B,

corr. A = 83* X 0.3 = 25',

corr. B =i 31' 6" X 0.3 = 9' 19";
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so that the error in the time of the upper transit is

£.300* — 25* ~ 75 s — 25* M 50%

and the error in the time of the lower transit is

£.300* + 25s ±- 75s + 25s = 100s — l
m 40*.

The times of the star's passing the meridian the second day

were, then,

7h 41™ + l
m 40s = T 42w 40* A. M.

and T 41- 32s— 50s = l h 40w 42s
P. M.

The error in the azimuth of the instrument was 9' 19" to the

west of north.

5. An observer at Boston, wishing to determine his meridian

line, on the morning of January 1, 1840, observed, by means

of a clock regulated to solar time, the superior transit of

Y UrssB Majoris at 5h 6m 54s A. M,, and the inferior transit

of Polaris at 6'1 12w 23s A. M. What was the azimuth error

in the position of the transit instrument?

Solution. The interval between these two transits is

6h 12™ 23s — 5h 6m 54s = I* 5m 29*.

But, by the Nautical Almanac,

12* + R. A. of Polaris = 13* \
m 59s

R. A. of y Ursae Majoris = 1 i
h 45m 25s

Sideral Interval = 1* 16™ 34s

Solar Interval = 1* 16™ 22s

Observed Interval = 1* 5m 29s

Error of Interval = 10m 53* = 653*.
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Now for 1000" of azimuth error, and the latitude of Boston,

Table C gives, since

Dec. of y Ursae Majoris . . = 54° 35'

Error of lower trans, of Polaris . — 1866s

Error of upper trans, of y Ursae Majoris =; 25s

Sum of errors . . . . — 1891 s

Then the proportion

1891* : 653s = 1000" : azimuth error,

gives

azimuth error — 345" = 5' 45'' W.

6. An observer, at Boston, wishing to determine his merid-

ian line, in the evening of December 17, 1839, observed by

means of a clock regulated to solar time, the superior transit

of « Cassiopeae at 6h 4Sm 35s P. M., and that of Polaris at

6h 53"* 15s P. M. What was the azimuth error in the posi-

tion of the transit instrument ?

Solution, By the Nautical Almanac,

R. A. of Polaris = I* 2m 26s

R. A. of a Cassiopeae '== h 31m 28s

Sideral Interval = 0* 30m 58s

Solar Interval — 0* 30™ 53s

Observed Interval — h 4m 40 s

Error of Interval = h 26m 13s = 1573s
.

Now Table C gives', for 1000" of azimuth error and the lati-

tude of Boston, since
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Dec. of a Cassiopeae = 55° 40'

Error of trans, of Polaris = 1777*

Error of trans, of a Cassiopeae s= 26*

DifF. of errors — 1751*

Then, the proportion

1751 s
: 1573s = 1000" : azimuth error

gives

azimuth error z* 900" : = V 30" E.

7. Calculate the proportional logarithm of 0° 2' 33".

Ans. 1.8487.

8. Calculate the proportional logarithm of 2° 59' 12".

Ans. 0.0019.

9. Calculate the corrections of tables A and B, when the

latitude is 54°, and the star's polar distance 20°.

Ans. Corr. A = 125s
.

Corr. B = 38' 48".

10. Calculate the corrections of table C, when the latitude

is 20°, and the polar distance 5°.

Ans. For the upper transit, corr. C = 091 s
.

For the lower transit, corr. C = 737s
.

11. An observer at Boston, in the year 1840, wishing to

determine his meridian line, observed three successive transits

of Polaris, by means of a clock regulated to solar time. The
first lower transit was observed at 6h A. M., the next transit at

19*
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7h 2CT 11 s P. M., and the second lower transit at 5* 56m 4s A. M.

What was the time of the star's passing the meridian the

second morning? and what was the azimuth error in the po-

sition of the instrument ?

Ans. The time of third merid. trans, was &1 58m 11 s A. M.

The azimuth error = V 8" W.

12. An observer at Boston, wishing to determine his me-

ridian line by means of a clock regulated to solar time, ob-

served the inferior tfansit of Polaris on April 4, 1839, at

h A. M., and the superior transit of n Ursse Majoris at
h 53m

59* A. M. What was the azimuth error in the position of his

transit instrument?

The R. A. of Polaris is V1 m 50*, that of n Ursse Majoris is

13* 4i» 14% and the declination of n Ursae Majoris is 50° 7' N.

Ans. The azimuth error = T 18" W.

13. An observer at Boston, wishing to determine his me-

ridian line, in the evening of May 1, 1839, observed by means

of a clock regulated to solar time, the lower transit of Polaris

at 9* 49 71 22-" P. M., and that of « Cassiopeae at 9* 52m P. M.

What was the azimuth error of the instrument?

The R. A. of Polaris = t*
m 56s

.

The R. A. of « Cassiopese == 0* 31 771 22s
.

The Dec. of « Cassiopese = 55° 39' N.

Ans. The azimuth error = 18' 23" W.
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Latitude found by meridian altitudes.

CHAPTER IV.

LATITUDE.

46. Problem. To find the latitude of a place.

Solution. The latitude of the place is evidently, from

(fig. 34.), equal to the altitude of the pole ; so that this problem

is the same as to find the altitude of the pole, which would be

done without difficulty if the pole were a visible point of the

celestial sphere.

First Method. By Meridian Altitudes. [B. p. 166-175.]

Observe the altitude of a star at its transit over the meridian,

and let

A z= the altitude of the star,

A 1 =z >fc's dist. from point of horizon below the pole
;

then, if the notation of § 28 is used, it is evident, from (fig. 34.),

that

L = A f ^pp; (344)

the upper sign being used when the transit is a superior one,

and the lower sign when it is an inferior one.

I. Suppose the observed transit to be a superior one ; then,

if it passes upon the side of the zenith opposite to the pole, we

have

A' = 180° — A, p = 90° =p 2>,
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arid (344) becomes

L=z90° —{A±D) = (90—A)±D—z±D
, (345)

the upper sign being used when the declination and latitude

are of the same name, and the lower sign when they are of

different names.

But if the star passes upon the same side of the zenith

with the pole, we have

A' = A, p = 90° — D
}

and (344) becomes

L — (A -f D)— 90° = D — (90° — A) = D— z. (346)

II. If the transit is an inferior one, we have

A' — A
y p — 90° — D

y

and (345) becomes

L =x (A— D) + 90° = A + (90° — D). (347)

Equations (345) and (346) agree with the rule of Case I,

[B. p. 166.], and (347) with Case II, [B. p. 167.]

III. If both transits are observed, and if A* and A are re-

ferred to the upper transits, and

A
2
= the altitude at the lower transit,

we have, by (344),

Lz=z A —p

the sum of which is

L = i{A' + A
1 ); (348)
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so that the latitude is determined in this case without knowing

the star's declination.

Second Method. By a Single Altitude.

Observe the altitude and the time of the observation.

I. If the star is considerably distant from the meridian, we
have given in the triangle PBZ (fig. 35.), PB, BZ, and

BPZ to find PZ, which may be solved by Sph. Trig. § 59,

and gives, by the notation of § 28,

tang. PC — cos. h tang, p = ± cos. h cotan. D (349)

cos. ZC z= cos. PC. cos. z sec. p
— ± cos. PC . cos. z cosec. D, (350)

in which the upper sign is used if the declination and latitude

are of the same name, otherwise the lower sign.

90° — L = PZ = PC± ZC
L = 90° — (PC do ZC)

; (351)

in which both signs may be used if they give values of L
contained between 0° and 90°, and in this case other data

must be resorted to, in order to determine which is the true

value of L.

Scholium. The problem is, by Sph. Trig. § 61, impossible,

if the altitude is greater than the declination, when the hour

angle is more than six hours.

II. If the latitude is known within a few miles, it may be

exactly calculated by means of (317), or

cos.z:= cos. [90°—(L+p)]— 2cos.£cos.Z>(sin.p) 2
. (352)
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But if A is the star's observed altitude, and^4
2

its meridian

altitude at its upper transit, (344) gives

A
x
— L + p, or = 180° — (L+p),

and (352) becomes, by transposition,

sin. A
2
= sin. A -f- 2 cos. L cos. D (sin. J A) 2

; (353)

from which the meridian altitude may be calculated by means

of table XXIII, as in the Rule. [B. p. 200.]

III. A formula can also be obtained from (281), which is

particularly valuable when the star is, as it always should be

in these observations, near the meridian.

In this case we have in (281) applied to PBZ
2sz=90°—L-\-p+z— 180°—L+ p—A

2s—2PZ—L+p— A
=zA

1
—Aov = 180° — (A

x + A) (354)

25—2PBz= 180° — L—p — A
— 180° — (A

1 + A)ov=A
1
— A; (355)

and if these values' are substituted in (281), after it is squared

and freed from fractions, they give

(sin. J h) 2 cos. L cos. Z>:=sin. J (^1
x
—^4) cos. J (A l

-\-A)
i (356)

or

sin.J(J.
1
—^l)=(sin.J/«) 2 cos. JLcos.Z>sec.J(-4

14-^); (357)

and if, in the second member of this equation, the value ofA
t

is used, which is obtained from the approximate value of the

latitude, the difference between the observed and the meridian

altitudes may be found at once ; and this difference is to be

added to the observed altitude to obtain the meridian altitude.
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IV. If the star is very near the meridian, %(A
1
— A) and

J h will be so small, that we may put

mn.i{A 1
— A) _ i(A l

—A)_ j(A'— A) sm.jh _
sin. 1" - I" — 1

'"
' sin.F — * '

or sin. i (A
1
— A) = i (A'— A) sin. \"

sin. J li — J h sin. 1*= l5 h sin. 1"
;

which, substituted in (357), give, by supposing A
x
equal to A

in the second member, which is very nearly the case,

A ,
— A = y> h2 sin. 1* cos. L cos. Z> sec. Jl

1
. (358)

This value of A
1
— A is proportional to h2 , so that if it

were calculated for

A= I
s

,

any other value might be calculated by multiplying byA2 .%

Now Table XXXII, of the Navigator, contains the values of

A
1
— A for all latitudes and for all declinations less than 24°,

excepting a few latitudes in which the meridian transit of the

observed body is too near the zenith for this observation to be

accurate ; and Table XXXIII contains all the values of h2 ,

where h is less than 13m .

V. If the observed star is very near the pole, we have in

(349)

tang. PC =: cos. h tang, p ; (359)

so that as p is very small, PC must be likewise small, and we

have

tang. PC PC
cos. h = =

tang, p p

PC=p cos. h; (360)
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;

_
,

—
Altitude of the pole star.

and, by PI. Trig. § 22,

cos. PC == 1, sin. D = cos. p = 1,

whence, by (350), and (351),

cos. ZC == cos. z, ,ZC = z
9

L=90o — PC—ZC=90° —z—PC
= A — p cos. h

; (361)

so that p cos. 7i may be regarded as a correction to be sub-

tracted from A when it is positive, that is, when the hour

angle is less than 6 hours, or greater than 18 hours; and it is

to be added when the hour angle is greater than 6 hours and

less than 18 hours.

The table [B. p. 206.] for the pole star was calculated for

the year 1840, when

its R. A. = l
h 2m ; its dec. == 88° 27' nearly.

Third Method. By Circummcridian Altitudes.

I. If several altitudes are observed near the meridian, each

observation may be reduced separately by (357) and (358),

and the mean of the resulting latitudes is the correct latitude.

II. But if (358) is used, the mean of the values of A
x
—A

is evidently obtained by multiplying the mean of the values of

h2 by the constant factor ; and if to the mean of the values

of A
x
— A, the mean of the values of A is added, the sum

is the mean of the values of A lt whence precisely the same

mean of resulting latitude is obtained as by the former method,

but with much less calculation.
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III. If the star is changing its declination in the course of

the observations, this change may, in all cases which can

occur if the hour angle is small, be neglected in the value of

cos. D. But the value ofA
x
will not, in this case, be at each

observation equal to the meridian altitude, but will differ from

it by the difference of the star's declination, Let the change

of the star's declination in one minute be denoted by <?Z>,

which is positive when the star is approaching the elevated pole;

and if h is J;he star's hour angle at the time of observation,

which is negative before the star arrives at the meridian and

afterwards positive, the whole change of declination is hdD,
so that the correct meridian altitude is

The mean of the values of the corrected meridian altitude is,

therefore, equal to the mean of the values of A
1

diminished

by the mean of the values of h $D ; and, if H denotes the

mean of the hour angles h (regard being had to their signs),

the correct meridian altitude is the mean of the values of A
x

diminished by H$D.

Fourth Method. By Double Altitudes.

I. Let two altitudes of a star, which does not change its

xleclination, be observed, and the intervening time. Then

(fig. 39.) let ^be the zenith, P the pole, 8 and 8' the po-

sitions of the star; join ZS, Z8\ PS, PS', and SS'M;
draw PI1

to the middle Tof 88', join ZT, and draw ZV
perpendicular to PT. Let

P=lPS—PS — 90°— D, SPS'=i elapsed time == h

8T=A ~8'T, PT— 90° — B
20
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A
x b£ 90° — ZS, A\ = 90° — ZS 1

ZTP =z T, ZT=F, ZV=C
TV= Z, PV=90° — E;

in which D and B are positive, when the latitude and decli-

nation are of the same name, but negative, if they are of con-

trary names ; Z is positive, if the zenith is nearer the elevated

pole than the point M.

Now the triangle TPS gives

sin. A == sin. PS sin. SPT— cos. D sin. £ k

cos. PS =: cos. PT cos. As or sin. D = sin. B cos. A, (362)

or cosec. A = sec. D cosec. £ h (363)

cosec, B = cos. A cosec. D. (364)

The triangles ZTS and ZTS' give

sin. A 1
= cos. Jr cos. J. — sin. J1

, sin. .4 sin. T, (365)

sin. A ', saa cos. .F cos. ^4 -{- sin. .F. sin. -4 sin. T, (366)

The sum and difference of which is, by (36) and (37),

sin. i{A x + A\) cos. £ (A\— A
x ) = cos. F cos. ^4, (367)

sin. J (*', — 4,) cos. | (A| + A\) z^sin.Fsin.^sin.T7
. (368)

But triangle ZTV gives

sin. C = sin. F sin. T, (369)

cos. F— cos. C cos. ^; (370)

which, substituted in (367) and (368), give

sin.C= sin. £(A\—A J cos. £ (A 2 + -4 i) cosec. A f (371)

sec.JZT=: cos.A cos.Csec. £ (A 2+A \ ) cosec.^(^i

—

A
t ). (372)
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But PV= PT— TV,

or 90° — E = 90° — B — Z
E = B + Z. (373)

Lastly, triangle ZPV gives

cos. PZ z= cos. ZV cos PV
sin. L = cos. C sin. E. (374)

Equations (363, 364, 371 - 374) correspond to the rule and

formula given in the Navigator. [B. p. 180.]

II. Another method of calculating the values of B, C, and

Z has been given, which dispenses with A and one opening

of the tables, and may therefore be preferred by some calcu-

lators, although it requires one more logarithm. Triangle

TPS gives

tang. PT — cos. J h tang. PS,

or cotan. B = cos. J h cotan. D. (375)

The substitution of (364) in (371) gives

sin.Cz= cos.%(A
x
-\-A \ ) sin.%(A\—A

x ) sec.D cosec.%h. (376)

Triangle PTS gives

cos. A == sin. D cosec. B
; (377)

which, substituted in (372), gives (378)

sec.Z= cos.Csin.Z> cosec. B cosec. ±(A
1 -f-^i;)sec.^(^4 1

'

—

A
± ).

Corollary, The hour angle ZPT is the mean between the

hour angles ZPS and ZPS'
t and if we put

ZPTz=H,
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the triangle ZP V gives

tang. II ±= tang. C sec. E, (379)

as in B. p. 181.

III. Douwes's Method. When the latitude is known within

a few miles. In this case let

U = the assumed latitude,

and the triangles ZSP and ZSP give

sin. A
x
= sin. L 1

sin. D -f cos. U cos. D cos. ZPS
} (380)

sin. A\ = sin. L' sin. D
-f- cos. L 1 cos. D cos. ZPS 1

; (381

)

whence, and by (39),

sin. A\— sin.A
x
= cos. Z/cos.D (cos. ZPS 1— cos. ZPS)

= 2cos.L'cos.Dsm.i(ZPS'-{-ZPS)sm.i(ZPS'--ZPS)

= 2 cos. Z/ cos. Z) sin. Z/ sin. ^- /a

2 sin. Zf= (sin.4

'

x
— sin. .4 ,

) sec. L 1 sec. Z> cosec. ^ /«, (382)

ZPS = H — l-h] (383)

whence the hour angle ZPS corresponding to the observation

at S' is known, and the latitude may be found by the method

of a single altitude. The combination of the formulas (380,

381), and the method of computing the latitude by a single

altitude, corresponds exactly to the rule given in the Naviga-

tor. [B. p. 185.]

The log. cosec. £ h is not only given in table XXVII, but

also in table XXIII, where it is called the log. £ elapsed time

off*.
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Table XXIII.

The value of

log. 2 sin. H— 5 = log. sin. H -f- log. 2

= log. sin. H— ar. co. log. 2 -J- 6

= log. sin. H— 4.69897

±= 5.30103 = log. elapsed time ofH (384)

is inserted in table XXIII, and is called the log. middle time

of H. The 5 is subtracted from log. 2 sin. if, on account of

the different values of the radius in tables XXIV and XXVII.

Scholium. When the calculated latitude differs much from

the assumed latitude, the calculation must be gone over again,

with the calculated latitude instead of the assumed latitude.

This labor may be avoided by noticing, in the course of the

original calculation, the difference which would arise from a

change of 10' in the value of the assumed latitude, and calcu-

lating the correction of the latitude by the rule of double

position. The error of the hypothesis is in each case the ex-

cess of the calculated above the assumed latitude, and the

proportion is

diff. of errors : diff. of hyp. = least error : corr. of hyp. (385)

IV. If the star has changed its declination a little, during

the interval between the observations, the second altitude will

correspond to a declination D', a little different from D.

If D 1
is put instead of D in (381), and if A 2 denotes the

second observed altitude, A
x
being retained to denote what

this second altitude would have been, if the declination had

remained unchanged, (381) becomes

sin. A'2 = sin. L' sin. D'+ cos. L' cos. D' cos. ZPS'. (385)

20*
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Table XLVI.

Now, if (381) multiplied by cos. D' is subtracted from (385)

multiplied by cos. D, the remainder is

cos. Dsin.il
'

2
—cos. 2> 7 sin.il j zz: sin.Z/sin.(Z>'—D). (386)

But if we put

D' — D = dD, A'2 — A'1 =dA 1 (387)

we have, by (13) and (15),

cos. D h± cos. (D+ 3 D) = cos. D— sin. a 2> . sin. Z> (388)

sin. ilgzzisin. (^4^+ *A
x
)=sin. A\-\-&\n. *A

X
. cos.il j, (389)

which, substituted in (386), give

sin.il'jSin.Dsin.^Z). -}-cos. A\ cos.Z?sin. ^iljZzzsin.Z/sin. §D

sin. (j^ __ SA
X _ sin. L 1 — sin. A\ sin. D . .

sin. d D Z ~~ TJj
~~

cos. A\ cos. D * '

and, by (34) and (35),

2sin.Ii 7— cos.(^
,

1
--.D)+ cos.(^

,

1+ J9)^
**p ^(A\ -D)+ cos. (A>

1+ D)— D
>
(391)

in which D is to be negative, when the latitude and decli-

nation are of contrary names. Hence the value of d A
1
can

be computed by this formula, and thence

A\ — A'2
— 3 A 19

and in calculating t A
t

, A'2 may be substituted fov A\. Since

the value of <S A
x

is proportional to sD, it may be computed

for some assumed value of 8 D, a d arranged in a table like

table XLVI of the Navigator, and the value of $A
1
can be

computed from this table by a simple proportion. The value

of A\ is thus found; the rest of the calculation can be con-

ducted according to the preceding methods, as in B. p. 189.
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By double altitudes of different stars.

V. If two stars are observed, whose declinations are quite

different. Then, if P (fig. 40) is the pole, Z the zenith,

S and S' the places of the star.

A
x
= 90° — ZS = the less altitude,

A\ = 90° — ZS 1 = the greater altitude,

D = 90° — PS = the declination of star at S,

D> = 90° — PS' — the declination of star at S',

H = SPS' ±= hour angle = interv. of sideral time.

Then, in the triangle PSS', PS, PS', and H are given to

find

SS' = C, and S'SP = 90° — F.

Next, in the triangle ZSS', the three sides are known, to

find the angle

ZSS' == z.

Hence ZSD = 90° — # = 90° — jP— Z
G = F+ Z.

Lastly, in the triangle ZSP, ZS, SP, and the included angle

ZSP are given to find

ZP 4 90° — L.

This solution is precisely similar to the Rule in B. p. 193
;

and it is easy to prove the rules for the s gns which are there

given.

VI. If the distance SS' were observed, the angles ZSS'
and S'SP might be found from the triangle ZSS' and S'SP,
in which the sides are all known, and the rest of the calcula-

tion would be as in the last method, and this method corre-

sponds exactly to the Rule in B. p. 197.
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Meridian altitudes.

47. Examples.

1. The correct meridian altitude of Aldebaran was found

by observation, in the year 1838, to be 55° 45', when its bear-

ing was south ; what was the latitude ?

Solution The zenith distance =z 34° 15' N.

The declination = 16° 10' N.

The latitude = 50° 25' N.

2. The correct meridian altitude of Canopus was found by

observation, in the year 1839, to be 16° 25', when its bearing

was south; what was the latitude?

Solution. The zenith distance = 73° 35' N.

The declination z= 52° 36' S.

The latitude = 20° 59' N.

3. The correct meridian altitude of Dubhe was found by

observation, in the year 1830, to be 50° 45', when its bearing

was north ; what was the latitude ?

Solution. The zenith distance = 39° 15' S.

The declination = 52° 36' N.

The latitude = 13° 21' N.

4. If the correct meridian altitude of Dubhe, at its greatest

elevation, were found by observation, in the year 1830, to be

50° 45', when its bearing was south ; what would be the lati-

tude?
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Solution. The zenith distance — 39° 15' N.

The declination = 52° 36' N.

The latitude = 91° 51' N.

The problem is impossible.

5. The correct meridian altitude of Dubhe, at its least ele-

vation, was found by observation, in the year 1830, to be

50° 45' ; what was the latitude ?

Solution. The polar distance ±= 37° 24'.

The altitude ±= 50° 45'.

The latitude = 88° 09' N.

6. The correct meridian altitudes of Dubhe, at its greatest

and least elevation, which were on opposite sides of the zenith,

were found by observation to be 41° 56' and 53° 16'; what

was the latitude ?

Solution. The greatest altitude — 53° 16'.

The least altitude = 41° 56'.

Diff. of altitudes == 11° 20 ;
.

180° — Diff. of altitudes = 168° 4(K

Latitude
' ~ 84° 20' N.

7. The correct meridian altitudes of a northern star, at its

greatest and least altitudes, which were on the same side of

the zenith, were found by observation to be 12° 14' and 72°

14' ; what was the latitude ?
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Single altitude.

Solution. Greatest alt. — 72° 14'.

Least alt. = 12° 14'.

Sum of alts. = 84° 28'.

Latitude = 42° 14' N.

8. In a northern latitude, the altitude of Aldebaran was

found by observation, in the year 1839, to be 25° 38', when its

hour angle was 4A 12™ 20s
; what was the latitude ?

Solution. By (349, 350, 351),

h = 4* 12™ 20s
cos. 9.65580

Z>=]6°11' cotan. 10.53729 cosec. 10.55484

90°—PC=32° 40'

ZC — 33° 6'

cotan. 10.19309

A = 25° 38'

sin. 9.73215

sin. 9.63610

cos. 9.92309

L = 65° 46' N.

9. In lat. 65° 40' N. nearly, the altitude of Aldebaran was

found by observation, in the year 1839, to be 25 38', when its

hour angle was 4A 12m 20s
; what was the true latitude?

Solution. I. 65° 40' COS. 9.61494

16° 11' COS. 9.98244

Ah 12m 20*

Nat. num. 21657

log. Ris. 4.73823

4.33567

25° 38' Nat. sine 43261

49° 31' N. Nat. cos. 64918

16° 11' N.

65° 42' N. = the latitude.
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Had the assumed latitude been taken 10' more, the calcu-

lated latitude would have been 65° 48J' N. ; hence, by (385),

3£ : 1£ — 10' : 4' = corr. of second hypothesis,

or the latitude — 65° 46' N., as in the preceding example.

II. By (357),

£ h = 2k 6m 10* 2 log. sin. 9.43720

L = 65° 40' cos. 9.61494

D — 16° IV cos. 9.98244

A
x
= 40° 31'

A =z 25° 38' A' = 25° 38'

A
l
—A=U 5V i(A l+ A) = 33° 4f sec. 10.07678

A
1
=40°29' i(A t

—A)— 7°25J' sin. 9.11136

corr. A
1
= 15° 2' =z corr. lat. = 65° 40'+ 2= 65° 42' as before.

10. Calculate the variation of a star's altitude in one minute

from the meridian, when the declination is 12° N. and the

latitude 5° N.

Solution. If A
2
— A is required in seconds, (358) gives

A j
— A — 450 sin. l

m
cos. L cos. D sec. A

x

by 450 sin. l
m — log. 450 + log. sin l

m

= 2.65321 -f 7.63982 = 0.29303

L ±t 12° cos. 9.99040

D =z 5° cos. 9.99834

i4 i:=83 sec. 0.91411

^ — A = 15".7, as in table XXXII. 1.19588
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Singlei altitude near the nleridian.

11. Calculate

XXXIII.

the tabular number for 11
m 48s

in table

Solution. Ilm 48s -= 708s
log. 2.85003

60s log. 1.77815

1.07188

2

139.2, as in table XXXIII. 2.14376

12. In lat. 45° 28' N. nearly, the correct altitude of Alde-

baran was found by observation, in the year 1839, to be

60° 40' 20", when its hour angle was 7m 17s
. What was the

true latitude, if the declination of Aldebaran was 16° 11'

9".2 N. ?

Solution. From Table XXXII 2".7

From!'able XXXIII

2 23". 1 =

53

143". 1

60° 40' 20"

Third alt. = 60° 42' 43". 1

Dec. — 16° 11' 9 '.2

Lat. = 45° 28'26".l N.

13. In lat. 40° N. nearly, the sum of ten correct central

altitudes of the sun, when its declination was 20° S. were

300° 20'. The hour angles of these observations were

4" 15s
,
3", 2W 6% l

m 8s

, 30s
, 50s

, l
m 12s

, 2
m 15s

,
3" 10s

, 4
OT 25s

.

What is the true latitude, if the change of declination is neg-

lected ?
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Latitude by circummeridian altitudes.

Solution. The numbers of Table XXXIII are

4m 15s gives 18.1

3 9.0

2 6 4.4

1 8 1.3

30 0.2

50 0.7

1 12 1.4

2 15 5.1

3 10 10.0

• 4 25 19.5

Sum == 69.7

Mean = 6.97

Table XXXII gives 1".6

11"

Mean of observations =r 30° 0' 40"

Merid. alt. = 30° 0' 51"

Dec. = 20° S.

Lat. z=39°59' 9" N.

14, AtGottingen, in lat. 51° 32' N. nearly, the correct central

altitudes of the sun on the 11th of March, 1794, were by

observation

21
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declination was ^ 30 a* S., and it

at the rate of 0.9$ in a minote. What is the

of the ahkodes is $4* 56 » .5 :

of Table XXXm is

by 1 ,5 from Ta-

The Mean of the boor angles is, regard-

ing their signs, — 1» 50% which, multiplied

by J98, gwes by (363), for the correction

of :ne MrifiMi nttSE I 5

The meridian altitude = S4 57 II

The declination — K S

Tiff hiton* = 51 ? » 4 TN,
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Hide by pole star.

i agrees exactly with the calculations of Littrow in his

15. Calculate the correction for the altitude of the pole star

ben the right ascension of the zenith is &* ?"*.

> tot©* By (301),

* i
w>w =i^ sec. o.oi::

j> = 1° 33* Prop. log. O.SSoS

Corr. alt. = 1 \\ the table, Prop. log. 0.3045

u> Wlu n the ti^ht ascension of the zenith was 7*9^*, the

altitude of the pole star was obsenod at Newburvport to be

4<<T 44'. What is the latitude of Newburvport ?

Solution. The correction of table == 0° &
Altitude • = 43° 44

Latitude . . s= 49 LI

IT. Calculate the log, elapsed time and log. middle time of

, win foi a ; u>.

flbb/toN. By Table XXVII and (384),

3* 7* 10* cosec. 0.13735 = log. elapsed time

5.30103

5 16968 = log. mid, time.
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Variation of star's altitude.

18. Calculate the variation of the altitude of a star arising

from the change of 100 seconds in the declination, when the

latitude is 40°, the declination 10°, and the altitude 30°.

Solution. By (391),

L' z=z 40°, 2 X Nat. sin. 1.2856 1.2856

A\ — D =z 20° Nat. cos. 0.9397 — 0.9397 0,9397

A\ + D=: 40° Nat. cos. 0.7660 0.7660 —0.7660

1.7057 1.1119 1.4593

1.7057 (ar. co.) 9.7681 9.7681

100" X 1.1119 2.0661

100" X 1.4593 2.1641

65" =; var. when D is -f, 1.8142

86" =z var. when D is —

,

1.9322

19 The moon's correct central altitude was found, by ob-

servation, to be 53° 43', when her declination was 14° 16' N.

After an interval, in which the hour angle was l
h 44m 15% her

correct central altitude was 42° 29', and her declination 13°

52' N. The latitude was 48° 50' N. nearly ; what was it

exactly ?

Solution. Table XLVI gives, for the second alt. 83"

Whole change of declination 24'

Correction of second altitude 20'

Corrected second alt. = 42° 49', dec. = 14° 16' N.
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Latitude by double altitudes.

I. By Bowditch's first method.

l
h Um 15* cosec. 0.64675

14° 16' sec. 0.01360 cosec. 0.60830

A cosec, 0.66035 cos. 9.98936 cos. 9.98936

B = 14° 38' N. cosec. 0.59766

cos. 9.82326 £ sum alts.=z48° 16' cosec. 0.12712

sin. 8.97762 % diff. alts.= 5° 27' sec. 0.00197

C sin. 9.46123 cos. 9.98103 cos. 9.98103

Z=37°19 / N. sec. 0.09948

E = 51° 57' N. sin. 9.89624

Latitude m 48° 55J'N. sin. 9.87727

II. By the method (375 - 378).

l
h Mm 15s cos. 9.98852 cosec. 0.64675

14° 16' cotan. 0.59469 sec. 0.01360 sin. 9.39170

B 55 14° 38' N. cotan. 0.58321 cosec. 0.59753

J sum alts.= 48° 16' cos. 9.82326 cosec. 0.12712

J diff. alts.= 5° 27' sin. 8.97762 sec. 0.00197

C cos. 9.98103 sin. 9.46123 cos. 9.98103

Z=37°18'N. sec. .09935

jEJ=z51°56'N. sin. 9.89614

Lat= 48°54£'N. sin. 9.87717

21*
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Latitude by double altitudes.

III. By Douwes's method.

48° 50' sec. 0.18161

53° 43' N. sin. 80610 14° 46' sec. 0.01360

42° 49' N. sin. 67965 log. ratio 0.19521

12645 log. 4.10192

I (lh 44w 15') = 52w 7£s
log. el. time 0.64689

l
h Um 18* log. mid. time 4.94402

52m ll£* log. ris. 3.41152

log. ratio 0.19521

1645 log. 3.21631

80610

34° 40' N. N. cos. 82255

14°16/ N.

Lat. = 48° 56' N.

Had the latitude been supposed 10' greater, the calculated

latitude would have been 48° 55' N.
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Latitude by double altitudes.

IV. By Bowditch's fourth method.

l
h Um 15s

sec. 0.04657 tan. 9.68938

14° 16' N. tan. 9.40531 sin. 9.39170

A = 15° 48' S. tan. 9.45188 cosec. 0.56485 cos. 9.98326

13°52 N.

B— 1° 56' S. cos. 9.99975 cosec. 1.47190

C 25° 16' cosec. 0.36961 cos. 9.95630

F~ 4° 6'N. cotan. 1.14454

53° 43' Z="51°38'N.

G — 55°44'N. sin. 9.91720

42° 29' sec. 0.13225 sin. 9.82955 cotan. 0.03820

£ sum =60° 44' cos. 9.68920 J sec. 0.12936 tan. 9.95540

Rem. = 7° V sin. 9.08692 K sin. 9.91823 J~ 42° 4'N.

2) 19.27798 lat. sin. 9.87714 13°52'N.

£ Z =i 25° 49' N. sin. 9.63899 lat.= 48° 54' N.K= 55° 56' N.

19. The correct meridian altitude of Aldebaran was, by

observation, 56° 25' 40" bearing south, and its declination at

the time of the observation was 16° S' 44" N. ; what was the

latitude ?

Arts. 49° 43' 4" N.
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Latitude by meridian altitudes.

20. The correct meridian altitude of Sirius was 70° 59' 33"

bearing north, and its declination 16° 28' 9" S. ; what was the

latitude ?

Ans. 26° 28' 36" S.

21. The meridian altitude of the sun's centre was 25° 38' 30"

bearing south, and its declination 22° 18' 14" S. ; what was

the latitude ?

Ans. 42° 3' 16" N.

22. The meridian altitude of the planet Jupiter was 50°

20' 8" bearing south, and its declination 18° 47' 37" N. ; what

was the latitude?

Ans. 58° 27' 29" N.

23. The altitude of the pole star was 30° 1' 30" below the

pole, and its polar distance 1° 38' 2"
; what was the latitude?

Ans. 31° 39' 32" N.

24. The altitude of Capella on the meridian below the pole

was 9° 52' 42", and its polar distance 44° 11' 33" ; what was

the latitude?

Ans. 54° 4' 15" N.

25. The meridian altitude of the sun's centre was 7° 9' 11"

below the pole, and its declination 23° 8' 17" N. ; what was

the latitude ?

Ans. 74° 0' 54" N.

26. The two meridian altitudes of a northern circumpolar

star were 61° 49' 13" and 47° 34' 27"
; what was the latitude ?

Ans. 54° 36' 50" N.
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Latitude by single altitudes.

27. In a northern latitude, the altitude of the sun's centre

was 54° 9', when its hour angle was 32m 40s
, and its declina-

tion 11° 17' N. ; what was the latitude?

Ans. 4G° 27' N.

28. In latitude 49° 17' N. nearly, the altitude of the sun's

centre was 14° 15', when its hour angle was l
h 40™, and its

declination 23° 28' S.; what was the true latitude?

Ans. 48° 55' N.

29. Calculate the variation of a star's altitude in one minute

from the meridian, when the declination is 3° and the lati-

tude 7°. *

Ans. It is 27".9 when the dec. and lat. are of the same

name, and 11".2 when they are of contrary names.

30. Calculate the tabular number for I2m 59' in Table

XXXIII.
Ans. 168.6.

31. In lat. 50° 30' N. nearly, the altitude of Sirius was

22° 59' 36", when its hour angle was 4m 15% and its declina-

tion 16° 29 ; ll" S. ; what was the true latitude?

Ans. 50° 30' 49" N.

32. In lat. 20° 27' N. nearly, the sum of seven altitudes of

Sirius was 371° 21'; the hour angles of the observations

were 7m , 5m 3s
, 2m 12*, 9% 3™, 4™ 6% 8m 13'; what was the

true latitude, if the declination of Sirius was 16° 29' 30" ?

Ans. 20° 26' 18" N.
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Latitude by circummeridian altitudes.

33. In lat. 50° N. nearly, the sum of twelve central alti-

tudes of the moon was 590° ; the hour angles of the observa-

tions were — 9m 3s
,
—-7™ 40% — 6W 12% — 5*30% — 3™ 2%

— 1*, — 12% 50% \
m 59% 4°% l

m 30% 10™
; the moon's me-

ridian declination was 19° 10' 58".4 N., and her change of de-

clination for one minute 13".875 ; what was the true latitude ?

Ans. 59° 50' 2".3 N.

34. Calculate the correction for the altitude of the pole star

[B. p. 206.], when the right ascension of the zenith is 9h 7m .

Ans. 48'.

35. The altitude of the pole star was 25° 9% when the right

ascension of the zenith was 21° 47'; what was the latitude?

Ans. 24° 8' N.

36. Calculate the log. elapsed time and log. middle time of

Table XXIII for & 49- 50s
.

Ans. Log. elapsed time = 0.00001

Log. middle time — 5.30102

37. Calculate the variation of the altitude of a star arising

from the change of 100 seconds in declination, when the lati-

tude is 60°, the declination 20°, the altitude 30°, and the

declination and latitude of the same name.

Ans. 85".

38. Calculate the variation of the altitude of a star arising

from the change of 100 seconds in declination, when the lati-

tude is 50°, the declination 24°, and the altitude 20°.

Ans. It is 73" when the lat. and dec. are of the same

name, and 105" when they are of contrary names.
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Latitude by double altitudes.

39. The sun's correct central altitudes were found by ob-

servation to be 30° 13' and 50° 4'; his declination was 20°

7'N., and the interval of sideral time between the observations

was 2h 55m 32s
; the assumed latitude was 56° 29' N. ; what

was the true latitude?

Ans. 56°47'N.

40. The sun's correct central altitude was 41° 33' 12", his

declination 14° N. ; after an interval of l
h 30m , his correct

central altitude was 50° V 12", and declination 13° 58' 38" N.;

the assumed latitude was 52° 5' N. ; what was the true lati-

tude ?

Ans. 52° 5' N.

41. The moon's correct central altitude was 55° 38% her

declination 0° 20' S. ; after an interval in which the hour angle

was 5*30* 49% her correct central altitude was 29° 37% and her

declination 1° 10' N. ; the assumed latitude was 23° 25' S.
;

what was the true latitude ?

Ans. 23° 24' S.

42. The sun's correct central altitude was 16° 6% his decli-

nation 8° 18' N. ; after an interval in which the hour angle

was 3\ his correct central altitude was 42° 14' 9", and his

declination 8° 15' N. ; the assumed latitude was 49° N. ; what

was the true latitude?

Ans. 48° 50' N.

43. The moon's correct central altitude was 35° 21% and her

declination 5° 31' 6" S. ; after an interval in which the hour

angle was 2h 20™, her correct central altitude was 70° 1% and

her declination 5° 28' 54" S. ; the assumed latitude was 1° 30' N.;

what was the true latitude ?

A?is. 1° 29' N.
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Corrections for the pole star in the Nautical Almanac.

44. The altitude of Capella was 60° 45' 36", and her decli-

nation 45° 48' 21" N. ; at the same instant, the altitude of

Sirius was 17° 54' 12", and his declination 16° 28' 40" S.

;

the hour angle was [
k 33™ 45 ?

, and the latitude was about

53° 15' N. ; what was the true latitude?

Ans. 53° 19' N.

45. The altitude of « Bootis was 50° 3' 39", and its decli-

nation 20° 10' 56" N. ; the altitude of « Aquilje was 33° 33',

and its declination 8° 22' 35" N. ; the hour angle of the ob-

servations was 5^ 5m 5hs
, and the assumed latitude 38° 27' N.

;

what was the true latitude?

Ans. 38° 28' N.

46. The distance of the centres of the sun and moon was

found, by observation, to be 75° ; the sun's central altitude

was 37° 40' ; the moon's central altitude was 55° 20' ; the sun's

declination was 0° 17' S. ; the moon's declination was 0° 36' N.

;

what was the latitude, supposing it to be north ?

Ans. 23° 24' N.

48. The method of determining the latitude by means of

the pole star is so accurate in practice, that tables are given

in the Nautical Almanac for correcting the observed altitude

for differences of latitude, and changes in the right ascension

and declination of the star.

The first correction of the Nautical Almanac corresponds

to that of the Navigator, and is calculated by (361) for R. A.

of Polaris = 1
A 1» 48*.2. (392)

Dec. of Polaris — 88° 26' 54" = 2>, (393)
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Corrections of the Nautical Almanac for Polaris.

which gives

p = 1° 33' 6" ss 5586" (394)

log. p = 3.74710 (395)

A = R. A. of zenith — It l
m 48*.2. (396)

The second correction of the Nautical Almanac depends

upon the latitude, and would vanish, if in (350) the values of

p and PC were so small that we could put

sin. D = cos. p -ss cos. PC ss 1.

Now equation (350) is equivalent to the proportion

cos. PC : cos. p ss cos. ZC : sin. A,

but, by (360),

ZC ss 90° — L — PC= 90° — L — p cos. *;

whence

cos. PC : cos. p ss sin. (L 4- p cos. A) : sin. ^4.

Hence, by the theory of proportions,

cos. PC— cos. p sin.
(
L -f- /? cos. A)— sin. -4 /QQ~ X

cos. jPC-j- cos.p sin. (jL-f-p cos. A) -}- sin. .4'

and, by (40), (41), and (360),

tang. [Jp (1 —cos. A)] . tang. [Jp (1 + cos. A)] s=

tang.£(Z,+p cos. A — it)
m

tang. J (X, + p cos. A + ,4)

'

K
'

or, since p and L -f- p cos. A— .4 are very small, we may put

tang. [Jp (1 — cos. A)] ss £p (1 — cos. A) tang. \"

tang. [Jp (1 -|-cos. A)] =z \p (1 + cos. A) tang. \"

22
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Corrections of the Nautical Almanac for Polaris.

tang. £ (L-\-p cos. h— A) = J (L-\- pcos.h— A)tang. \"

tan. J {L-\-p cos.7i-\-A)—t&n.[L-\-p cos.Ji—%(L-\-pcos.h—A)]

— tang. (L -\-p cos. h)
y

which, substituted in (390), give

\p 2 (1— cos. 2 A)tang.(Z/~|-pcos.7f) tang.l"— JL-{-pcos. h—A
or

L=p cos. h -{-A+ Jjp
2 sin. 2 h tang.(L-{-p cos. h) tang, t" (399)

so that

£ p
2 sin. 2 A tang. (L+ p cos. A) tang. 1

"

(400)

or J p 2 sin. 2 A tang L tang. 1"

is the correction depending upon the latitude, and in calculat"

ing it we have

log. (£ p
2 tang. 1") s 7.49420 + 9.69897 + 4.68558

== 1.87875 (401)

and 7i is the same as in (396).

The third correction of the Nautical Almanac is the change

in the value of the first correction arising from the changes in

the declination and right ascension of the star. Thus if the

declination is greater than that of (393) by <* Z>, the value of

p must be less by d D, and the correction —p cos. h is in-

creased by

S D cos. h. (402)

Again, if the right ascension is greater than that of (392)

by $ R, the value of h must be less by J R, and the value of

— p cos. h is increased by

—p [cos. (h — dR)— cos. h]i (403)

which, by (15), is equal to
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Corrections of the Nautical Almanac for Polaris.

—p sin. $R sin. h = — p d R sin. I
s
sin. h

— 5580 X 0.000075 X dR s\n.h=z0"AdRsm.h, (404)

and the whole change is the sum of (402) and (404). The
values of (402) and (404) are easily obtained from the tables

of difference of latitude and departure. We may neglect the

l
m 48*.2 in the value of h (396), when we calculate these cor-

rections, and take

h — R. A. of zenith — 1\ (405)

The third correction is sometimes positive and sometimes

negative, but always less than 1', so that

V -f- the third correction

is always positive ; and this is the given sum in the Nautical

Almanac ; that is, the third correction is given 1' greater than

its real value, so that it may always be positive. The latitude,

obtained by means of the table of the Nautical Almanac,

would then be V greater than its true value, if V were not

subtracted agreeably to the rule given in the Almanac.

49. Examples.

1. Calculate the first correction of the Nautical Almanac

when the R. A. of the zenith =d 4* 20w.

Solution. log. p = 3.74710

L = ±h 20" — l
h
l
m 48*.2 = 3h 18- 11\8 cos. 9.81219

1st corr. == 3624" — 1° 0' 24" 3.55929

2. Calculate the second correction of the Nautical Almanac

when R. A. of the zenith is l h 30m, and the latitude 50°.
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Corrections of the Nautical Almanac for Polaris.

Solution. log. (£p2 tang. 1") 2= 1.87875

L = 6 h 28m 11».8 sin.2 9.99340

50° tang. 0.07619

2d corr. = 89" = 1' 29" 1.94834

3. Calculate the third correction of the Nautical Almanac

for Dec. 31, 1839, when R. A. of zenith == 14\

Solution. h=Uh—l h =i 13A
p= 12* + l

h= 180°+ 15°.

Dec. of Polaris = 88° 27' 46".6, R. A. — l
h

l
m 59s.47

D =s 88° 26' 54" l
h

l
m 48'.2

*D=: 52".6 <*22 z=z 11*.27

0'A$R = 4".5

By Table II., omitting the tenths of seconds in the result,

V + 3d corr. — V— 50".8 + 1".2 — 1' — 50" — 10".

4. The correct altitude of Polaris on June 25, 1839, was

47° 28' 35", when the Right ascension of the zenith was 6h

18m 30s
; what was the latitude?

Solution. Cor. Alt. = 47° 28' 35"

First corr. = — 13' 27"

A + First corr. rs 47° 15' 8"

Second corr. = 1' 28"

Third corr. = 1' 6" — I1

Lat. sr 47° 16' 42" N.
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Observer in motion.

5. Calculate the three corrections of the Nautical Almanac

for Sept. 1, 1839, and latitude 70°, when the R. A. of zenith

is 8h
. At this time, we have

Dec. of Polaris = 88° 27' 8".4, its R. A. = t* 2m 21*.32.

Ans. The first correction = 23' 23"

The second correction =z 3' 15"

1' -f The third correction = 43".

6. The correct altitude of Polaris on March 6, 1839, when

the R. A. of the zenith was 6* 39™ 24 s
, was 46° 17' 28"; find

the latitude. The following is an extract from the tables of

the Nautical Almanac sufficient for the present example.

1st corr. 2d corr.

Lat. =s 45° Lat.z=50{

6h 30m — 12' 53" V 14" r 28"

6*40™ — 8' 51" 1' 16" V 30"

Third correction -{- 1/

March 1, April 1,

6* V 27" 1' 27"

8h V 13" V 19"

Ans. 46° 10y 3" N.

50. The observer has been supposed stationary in the pre-

ceding observations, but if he is in motion his second altitude

will differ from the altitude for this time at the first station by the

number of minutes by which the observer has approached the

star or receded from it ; so that the correction arising from

this change of place is obviously computed by the method in

[B. p. 183.]

22*
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Greatest altitude of a star in motion.

51. In observing the meridian altitude of a star, the position

of the meridian has been supposed to be known; but if it

were not known, the meridian altitude can be distinguished

from any other altitude from the fact that it is the greatest or

the least altitude; so that it is only necessary to observe the

greatest or the least altitude of the star.

52. But if the star changes its declination, the greatest alti-

tude ceases to be the meridian altitude. Let h denote the

hour angle of the star at the time of observation. Then if

the star did not change its declination, and if B were the

number of seconds given by Table XXXII ibr the diminution

of altitude in one minute from the meridian passage, h 2 B
would be the diminution of altitude in h minutes. But, since

h is small, the altitude, at this time, is increased by the change

of declination ; so that if A is the number of minutes by

which the star changes its declination in one hour, that is, the

number of seconds by which it changes its declination in one

minute, h A will be the increase of altitude in (he time h, so

that the altitude at the time h exceeds the meridian altitude by

h A — A 2 B. (406)

If, then, h denotes the time of the greatest altitude, and

h-\-dfi a time which differs very slightly from the greatest

altitude ; the greatest altitude exceeds the altitude at the time

h-\-dh by the quantity

(h A — A* B) — [(/*+ S h) A— (h+ S ft)* B]

=zdh[(—A+2Bh)-\-Bdh], (407)

and 3 h can be supposed so small that B$7i may be insensible,

and (407) becomes

d h(—A + 2Bh). (408)
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Now — A -f- 2 B h cannot be negative, because h is sup-

posed to correspond to the greatest altitude, and cannot be

less than the altitude at the time li -\- § h. Neither can

— A-{-2Bhbe positive, for the altitude at the time h ex-

ceeds that at the time h— 8 h by the quantity

_*/,(_ A + ZBh),

which, in this case, would be negative, and the altitude at the

time h— d li would exceed the greatest altitude. Since, then,

— A -\- 2 B h can neither be greater nor less than zero, we

must have

— A + 2Bh=zO

h = wm (409)

and this value of A, substituted in (406), gives

A* A^ A*
2B 42* 4B (410)

for the excess of the greatest altitude above the meridian alti-

tude.

f

53. If the observer were not at rest, his change of latitude

will affect his observed greatest altitude in the same way in

which it would be affected by an equal change in the declina-

tion of the star ; so that the calculation of the correction on

this account may be made by means of (409) and (410) pre-

cisely as in [B. p. 169.]

54. EXAMPLES.

1. An observer sailing N.N.W. 9 miles per hour found, by

obserration, the greatest central altitude of the moon, bearing
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south, to be 54° 18 /

; what was the latitude, if the moon's

declination was 6° 30' S., and her increase of declination per

hour 16 /.52?

Solution, J> 's zenith dist. =. 35° 42' N.

3>'s dec. = 6°30'S.

Approx. lat. — 29° 12' N.

J) 's increase of dec. per hour == 16'.52 S.

Ship's change of lat. =£= 8.3

A = 24.82, A* = 616.0

By Table XXXII B — 2.9, 4 B = 11.6

Corr. of gr. alt.= corr. of lat. z= 52" = 1' nearly

Lat. = 29° 12' + 1' = 29° 13' N.

2. An observer sailing south 12J miles per hour found, by

observation, the greatest central altitude of the moon bearing

south, to be 25° 15'; what was the latitude, if the moon's

declination was 1° 12' N., and her increase of declination per

hour 18'.5 !

/ Ans. 66° 1' N.
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Obliquity. Equinoxes. Signs.

CHAPTER V.

THE ECLIPTIC.

55. The careful observation of the sun's motion

shows this body to move nearly in the circumference

of a great circle. This great circle is called the eclip-

tic, [B. p. 48.]

56. The angle which the ecliptic makes with the

equator is called the obliquity of the ecliptic.

57. The points, where the ecliptic intersects the

equator, are called the equinoctial points ; or the equi-

noxes. The point through which the sun ascends from

the southern to the northern side of the equator is called

the vernal equinox, and the other equinox is called the

autumnal equinox. %

The points 90° distant from the ecliptic are called

the solstitial points, or the solstices. [B. p. 49.]

58. The circumference of the ecliptic is divided into

twelve equal parts, called signs, beginning with the

vernal equinox, and proceeding with the sun from west

to east.

The names of these signs are Aries (°f), Taurus (8),
Gemini (n), Cancer (zb), Leo (g\,,) Virgo (v%), Libra (£t),
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Scorpio
(
Trl), Sagittarius (f), Capricornus (V?), Aquari*

us (£#), Pisces (X)- The vernal equinox is therefore the

first point, or beginning of Aries, and the autumnal equinox

is the first point of Libra; the first six signs are north of the

equator, and the last six south of the equator. The northern

solstice is the first point of Cancer, and the southern solstice

the first point of Capricorn. [B. p. 49.]

59. Secondary circles drawn perpendicular to the

ecliptic are called circles of latitude.

The circle of latitude drawn through the equinoxes

is called the equinoctial colure.

The circle of latitude drawn through the solstices is

called the solstitial colure. [B. p. 49.]

Corollary. The solstitial colure is also a secondary to the

equator, so that it passes through the poles of both the equator

and the ecliptic.

60. Small circles, drawn parallel to the equator

through the solstitial points, are called tropics.

The northern tropic is called the tropic of Cancer ;

the southern tropic the tropic of Capricorn.

Small circles, drawn at the same distance from the

poles which the tropics are from the equator, are called

polar circles.

The northern polar circle is called the arctic circle,

the southern the antartic.

61. The latitude of a star is its distance from the

ecliptic measured upon the circle of latitude, which
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passes through the star. If the observer is supposed to

be at the earth, the latitude is called geocentric latitude ;

but if he is at the sun, it is heliocentric latitude. [B.

p. 49.]

62. The longitude of a star is the arc of the ecliptic

contained between the circle of latitude drawn through

the star and the vernal equinox. [B. p. 50.]

Corollary. The longitude and right ascension of the first

point of Cancer are each equal to 6A
, and those of the first

point of Capricorn are each equal to 18A.

63. The nonagesimal point of the ecliptic is the

highest point at any time.

Corollary. The distance of the nonagesimal from the zenith

is therefore equal to the distance of the zenith from the eclip-

tic, that is, to the celestial latitude of the zenith; and the

longitude of the nonagesimal is the celestial longitude of the

zenith.

64. Problem. To find the latitude and longitude of

a star, when its right ascension and declination are

known.

Solution. Let P (fig. 35.) be the north pole of the equator,

Z the north pole of the ecliptic, and B the star. Then EQW
will be the equator, NESW the ecliptic, and NPZS the

solstitial colure, so that the point S is the southern solstice,

and N the northern solstice. Now if the arc PB be produced

to cut the equator at M, and ZB to cut the ecliptic at L
;

the angle ZPB is measured by the arc QM, that is, by the
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difference of the right ascensions of Q and M, or by the dif-

ference of the ^fc's right ascension and 18*; that is,

ZPB — 18* — R. A. z= 24* — (G* + R. A.) (411)

or = R. A. — 18* = (R. A. + 6*)— 24*

or = 24*+ R. A. — 18* — R. A. + 6*.

In the same way

PZB — NL — Long. — 90° (412)

or = 360° — (Long. 90°)

or = — (Long. — 90°),

in which the first values of ZPB and PZD correspond to

the star's being east of the solstitial colure ; the second and

third values to the star's being west of the colure. We also

have

PB — 90° — Dec. (413)

BZ = 90° — Lat. (414)

+ PZ == 90° — ZQ=QS
= obliquity of ecliptic z= ± E, (415)

in which the declination and latitude are positive when north,

and neo-ative when south, and E has the same sign with

R. A. — 12*.

The present problem does not, then, differ from that of

§ 28, and if we put

±i = PC- 90°, (416)

in which the upper sign is used, when R. A. — 12* is positive,

and otherwise the lower sign, we have by (99, 105, and 98)

tang. PC=n =F cotan. A = cos. (R. A. -\- 6*) cotan. Dec.

b=— sin. R. A. cotan. Dec. (417)
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in which the signs are used as in (416) ; so that A and Dec.

are always positive or negative at the same time. Instead of

(417), its reciprocal may be used, which is

=p tang. A — — cosec. R. A. tang. Dec. (418)

If, then, B = E + A, (419)

we have

AP z= =F E — 90° =|= A =z =p B — 90° (420)

or z= 90° ± A ± -E = 90° ± #,

in which the upper or lower signs are used, as in (415). Hence

cos. PC : cos.AP= ^p sin. A : =p sin.B— sin. A : sin. J5

z= sin. Dec. : sin. Lat. (421)

so that, since Dec. and A are both positive or both negative,

B and Lat. must also be both positive or both negative. Again,

sin. PC : sin. PA = cos. A : i cos. B (422)

= dzcotang. (R. A+ 6A
) : ± cotan. (Long. —90°)

=r zh tang. R. A. : ± tang. Long.

in which the signs may be neglected, and Long, is to be found

in the same quadrant with R. A., unless the foot P of the

perpendicular falls within the triangle; in which case the first

value of AP (420) is used, so that B is obtuse. In this case,

the longitude is in the adjacent quadrant on the same side of

the solsticial colure with the right ascension. These results

agree with the Rule in [B. p. 435.]

65. Corollary, The latitude and longitude of the zenith,

that is, the zenith distance and longitude of the nonagesimal,

might be found by the same method. But another rule can be

23
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used, which is of peculiar advantage, where these quantities

are often to be calculated for the same place. We have by

(310) and (311), calling B the zenith, and putting

T = 24* — ZPB or — ZPB (423
)

F=£(PZB—ZBP) or == 180°— £ (PZB—ZBP) (424)

G— i (PZB+ ZBP) or = 180°— J (PZB+ ZBP) (425)

tang.P^-- cosec.J(PJ5+PZ)sin.J(PjB—PZ)cotan.JZ T

= tang. (24*— P) (426)

tang. 6?=— sec. £ (PP+PZ)cos.J(PP—PZ)cot. JP (427)

90° -fP+#= PZB+ 90° or =360°—PZB -{-90° (428)

= Long, or = 360° + Long. (429)

in which the first member of (426) is used when PB is

greater than PZ, and the third when PB is less than PZ,
that is, within the north polar circle ; and the second members

of (423, 424, 425, 428) correspond to the position of the ze-

nith at the east of the solstitial colure, but the third members

to the west of the colure.

Again, by (295),

tang. J (90°— lat.) z=r tang. J alt. nonagesimal

= cos. G . sec. F tang. § (PB + PZ), (430)

and the preceding formulas correspond to the rule in [B.

p. 402.]

66. Scholium. The rule with regard to the value of G ap-

pears to be a little different, but the difference is only apparent

;
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for it follows from (427), that G and 12A— J T are, at the

same time, both acute or both obtuse, unless

i (PB + PZ)> 90°,

or PjB>180° — PZ, (431)

which corresponds to the south polar circle.

67. The abridged method of calculating the altitude and

longitude of the nonagesimal [B. p. 403.], only consists in the

previous computation of the values

A — log. [cos. (*-PB — PZ) sec. i(PB + PZ)] (432)

C z= log. tang, i (PB + PZ) (433)

B = log. tang. £ (PB — PZ) — C (434)

=z log. [tang. £ (PB— PZ) cotan.
J-
(PB+PZ)]

== log. [co8ec.£(PB+PZ)Bin.£(PB—PZ)]—A,

whence

log. [cosec.i(PB-{-PZ)sm.i(PB—PZ)] — B+A (435)

and log. tang. G= A + log. (-— cotan. | T) (436)

log. tang.F=A+B+ log. (—cotan.£ T) (437)

= log. tang. G -\- B

log. tang. £ alt. non.= log. cos. (2
-f- log. sec. F+ C (438)

68. The rule in [B. p. 436.] for finding right ascension and

declination, when the longitude and latitude are given, may
be obtained by a process precisely similar to that for the rule

before it.
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69. Examples.

1. Calculate the latitude and longitude of the moon, when

its right ascension is 4A 42OT 56% and its declination 27° 21'

58" N., and the obliquity of the ecliptic 23° 27' 45".

Solution. 27° 21' 58" N. tang. 9.71400

4A 42™ 56s tang. 0.45650 cosec. 0.02503

A = 28° 44' 12" N. sec. 0.05708 tang. 9.73903

E == 23° 27' 45" S.

B = 5° 16 / 27"N. cos. 9.99816 tang. 8.96524

long. = 72° 53' 31" tang. 0.51174 sin. 9.98034

lat.= 5° 2'33"N. tang. 8.94558

2. Calculate the values of A, B, and C for the obliquity

23° 27' 40", and the reduced latitude of 42° 12' 2" N.

Solution. Polar dist. == 47° 47' 58"

47° 47' 58"

23° 27' 40"
.

£ sum =z 35° 37' 49" sec. 0.09002 tang. 9.85536

diff. = 12° 10' 9" cos. 9.99013 tang. 9.33374

A = 0.08015, B = 9.47838

3. Calculate the altitude and longitude of the nonagesimal,

when the right ascension of the meridian is 19* 50™, the lati-

tude 42° 12' 2" N., and the obliquity 23° 27' 40".
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Solution. T= 19* 50™ + 6* — 24* = 1* 50-

£(l*50m) cotan. 0.61137

A ss; 0.08015

£=101° 30' 2" tang. 0.69152 cos. 9.29968

90° B = 9.4783S C= 9.85536

F= 124° 4' 5" tang. 0.16990 sec. 0.25167

long. == 315° 34' 7" 14° 18' 40" tang. 9.40671

alt. = 28° 37' 20".

4. Calculate the latitude and longitude of the moon, when

its right ascension is 18* 27m 12s
, and its declination 27° 49

38" S., and the obliquity of the ecliptic 23° 27' 45".

Ans. The i) 's long. == 276° 1' 46"

its lat. = 4°30 / 26"S.

5. Calculate the values of A, B, and C for Albany, and

the obliquity 23° 27' 40".

Ans. A =3 0.07967

B — 9.47573

C = 9.85333

6. Calculate the longitude and altitude of the nonagesimal,

when the obliquity of the ecliptic is 23° 27' 40", the latitude

42° 12' 2"N., and the R. A. of the meridian 10* 10".

Ans. The long. = 138° 30' 23"

alt. = 61° 18' 49".

23*
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7. Calculate the moon's right ascension and declination,

when its latitude is 5° 0' 1" N., its longitude 64° 54' 1", and
the obliquity of the ecliptic 23° 27' 45".

Ans. Its R. A. -= 4h 7m 46*.

Its Dec. = 26° 3' V N.

70. Problem, To find the declination of a star.

Solution. I. Observe its meridian altitude, and its declina-

tion is at once found by one of the equations [345 - 347.]

II. If the star does not set, and both its transits are observ-

ed, we have

p — 90° — Dec. = J (A j
—

- A'). (438)

71. Problem. To find the position of the equinoctial

points.

Solution. Since the right ascension of all stars is counted

from the vernal equinox, and since the two equinoxes are 12*

apart, the present problem is the same as to find the right

ascension of some one of the stars, which may afterwards

serve as a fixed point for determining the right ascension of

the other stars.

Observe the declination of the sun for several successive

noons near the equinox, until two noons are found between

which its declination has changed its sign ; and observe also

the instant of the sun's transit across the meridian on these

days, by a clock whose rate of going is known. Then, by

supposing the sun's motions in declination and right ascension

to be uniform at this time, which they nearly are, the time

of the equinox, that is, of the sun's being in the equator, is

found by the proportion



§ 72.] THE ECLIPTIC. 271

To find the. right ascension of a star.

the whole change of declination : either declination =
the sideral interval between the transits — 24/l

: the

sideral interval between the transit of the equinox and

that of the sun at this declination; (439)

and this interval is the difference between the right ascensions

of the sun at this declination and the equinox. If the passage

of a star had been observed in the same day, the right ascen-

sion of the star would have been the interval of sideral time

of its passage after that of the vernal equinox. t

72. Examples.

1. If the sun's declination is found at one transit to be

7' 9".5 S., and at the next transit to be 16' 3I".l N. ; what is

the sun's right ascension at the second transit, if the sideral

interval of the transits is 24/l 3™ 38s
.21.

Solution.

T 9".5 + 16' 31". 1 = 23' 40 //.6 — 1420'.6 ar.co. 6.84753

1G' 31 .1 ae 991".l 2.99612

3m 38 ?

.21 = 218s
.21 2.33887

©'s R. A. == h 2" 32 s
.2 152\2 2.18252

2. If the sun's declination is found at one transit to be

18' 38".8S., and at the next transit to be 5' 3".2 N. j what is

the sun's right ascension at the second transit, if the sideral

interval of the transits is 24* 3™ 38s
.4 ?

Ans. h m 46*.5.

3. If the sun's declination is found at one transit to be

5' 57".9 N., and at the next transit to be 17' 26 //
.3 S. ; what is

the sun's right ascension at the second transit, if the sideral

interval of the transits is 24A 3™ 35s
.71 1

Ans. 12*2™40*.8.
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73. Problem. To find the obliquity of the ecliptic.

Solution. I. Observe the right ascension and declination

of the sun, when he is nearly at his greatest declination ; that

is, when his right ascension is nearly 6h
or 18\ If he were

observed at exactly his greatest declination, the observed

declination would obviously be the required obliquity. But for

any other time, the sun's declination and right ascension are

the legs of a right triangle, of which the obliquity of the eclip-

tic is the angle opposite the declination. Hence

tang. ©'s Dec. =z sin. ©'s R. A. tang, obliq. (440)

Now if we put

h = the diff. of ©'s R. A. and R. A. of solstice,

we have

7 tang, ©'s Dec. #***,
cos. h = ^^4-_

—

(441
tang. Obliq. v '

and by (277) and (278),

sin. (obliq. — ©'s dec.) _ I— cos. h 2 sin. 2 %h

sin. (obliq. -j- ©'s dec.)
~~

1-f-cos. h 2 cos. 2%h

— tang. 2 J £ (442)

sin. (obliq.— ©'s dec.) = (obliq.— ©'s dec.) sin. \"

= tang. 2 £ /Vsin. (obi. + ©'s dec.) (443)

obi.— ©'s dec.= cosec. I" tan. 2 £ h sin. (obl.+ ©'s dec.) (444)

— -i/^cosec.l^tan. 2 I
s
sin. (obi. -f ©'sdec.)

and the second member of (444) may be regarded as a cor-

rection in seconds to be added to the ©'s dec. to obtain the

obliquity, and the obliquity in the second member need only

be known approximately.
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74. Examples.

1. The right ascensions and declinations of the sun on sev-

eral successive days were as follows :

June 19, R. A. = 5* 50™ 53% Dec. — 23°26' 45".2N.

20 5 55 3 23 27 27 .3

21 5 59 12 23 27 44 .7

22 6 3 21 23 27 37 .3

23 6 7 31 23 27 4 .6

To find the obliquity of the ecliptic.

Solution. Assume for the obliquity the greatest observed

declination, or 23° 27' 45", and the corrections of all the ob-

servations may be computed in the same way as that of the

first, which is thus found,

I cosec. 1" tang. 2 I
s= *§* tang. 1" 6.43570

h — 9m T = 547s 2 log. 5.47598

23° 26' 45"+ 23° 27' 45" z= 4G° 54' 30" sin. 9.86348

cor. dec. — 59".59 1.77516

23° 26' 45".2

obliquity — 23° 27' 44".8 =z 23° 27' 44".8

In the same way the 2d observation gives 23 27 44 .9

the 3d observation gives 23 27 45 .2

the 4th observation gives 23 27 45 .3

the 5th observation gives 23 27 45 .3

sumzzr 117 18 45 .5

The mean = 23° 27' 45". 1
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2. The right ascensions and declinations of the sun on sev-

eral successive days, were as follows

:

Dec. 20 ©'s R. A. = llh 51m 1

4

s 23° 26' 48".4 S.

21 17 55 40 23 27 30 .0

22 18 7 23 27 44 .0

23 18 4 33 23 27 29 .5

24 IS 9 23 26 45 .5

what was the obliquity?

Ans. 23° 27' 44 //
.7.
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CHAPTER VI.

PRECESSION AND NUTATION.

74. The ecliptic is not a fixed but a moving plane,

and its observed position in the year 1750 has been

adopted by astronomers as a fixed plane, to which its

situation at any other time is referred.

The motion of the ecliptic is shown by the changes in the

latitudes of the stars.

75. Celestial motions are generally separated into two
portions, secular and periodical.

Secular motions are those portions of the celestial

motions which either remain nearly unchanged, or else

are subject to a nearly uniform increase or diminution

which lasts for so many ages, that their limits and times

of duration have not yet been determined with any

accuracy.

Periodical motions are those whose limits are small,

and periods so short, that they have been determined

with considerable accuracy.

76. The true position of a heavenly body, or of a

celestial plane, is that which it actually has ; its mean
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position is that, which it would have if it were freed

from the effects of its periodical motions.

The mean position is, consequently, subject to all the secu-

lar changes.

77. The mean ecliptic has, from the time of the

earliest observations, been approaching the plane of the

equator at a little less than the half of a second each

year, thus causing a diminution of the obliquity of the

ecliptic.

Let NAA 1
(fig. 41.) be the fixed plane of 1750, and NA

X

the mean ecliptic for the number of years t after 1750. Let

A be the vernal equinox of 1750, and AQ the equator. Let

n z= NA and n = the angle ANA
1 ;

then, upon the authority of Bessel, the point of intersection N
of the ecliptic, which is called the node of the ecliptic, with

the fixed plane, has a retrograde motion, by which it ap-

proaches A at the annual rate of 5". 18, and if this point could

have existed in 1750, its longitude would have been 171° 36'

10", so that

§
ii— 171° 36' 10" — 5". 18 t. (445)

Moreover, the angle which the mean ecliptic makes with the

fixed plane increases at the annual rate of 0".48892, but this

rate of increase is itself decreasing at such a rate, that at the

time t this angle is

rr — 0",4S892 t— 0".00000307l9 t* (446)

78. Problem. To find the change of the mean lati-

tude of a star, which arises from the motion of the

ecliptic.
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Solution. Let

L = the #'slat. in 1750

3L = its change of lat.

J. z= its long, in 1750—171° 36' 10" + 5". 18* (447)

= its long, referred to the node of the ecliptic

<M z= its change of long, from the node

;

then, if Z (fig. 42) is the pole of the fixed plane, P that of

the ecliptic, and B the star ; we have

PZ =tt, ZB = 90° — L, PB = 90° — L — dL

PZB = 90° + j, P = 90° — J — 9

A

Draw ZC perpendicular to PB, and we have, since PZ, PC,
and CZ are very small,

PC — PZ cos. P = it sin. (^ + 9 A)

or =. TV sin. J-

cos. PZ : cos. PC= cos. PZ : cos. BC

or P^ = PC
PC— PB—BZ=z—dL=iTv Sm.j

3 L = — re sin. A (448)

S3_ (0".4S892 *— //.0000030719 *2) sin. >.

Again, the triangle ZPP gives, by (295),

sin.\(PZB+P) : cos.|(PZP- P)=:tan.jU : tan.£(PP+P,Z)

But

£(PZB+ P)= 90°—%U, i(PZB—P)= J+ltj,

24
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Mean celestial equator.

whence 9 A — n cos. 4 tang. L (449)

sa (0".48892 t — 0".0000030719 t
2

) cos. a tang. L.

79. The mean celestial equator has a motion by which

its node upon the fixed plane moves from the node of

the ecliptic at the annual rate of about 50", while its

inclination to the fixed plane has a very small increase

proportioned to the square of the time from 1750.

Thus, if AQ (fig. 41.) is the equator of 1750, and A 1 Q'

that for the time f, so that A is the vernal equinox of 1750,

and APA x
that for the time t.

Let yj = AA'
t

to — NA'Qi,

then A' moves from A at the annual rate of 50 '.340499, and

this rate is diminishing so that at the time

y = 50//.340499 t — O'.OOO 121 7945 t 2
, (450)

and the value of w in the year 1750 was

* — 23° 28' 18",

and is increasing at a rate proportioned to the square of the

time, so that

w = co/
-J-

0".00000984233 t
2

. (451)

80. Problem. To find the change of the mean ob-

liquity of the ecliptic and that of longitude.

Solution. Let (fig. 41.)

JV^Q'z^, NAA
1
= tl + Ji;
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Change of mean obliquity and longitude.

then, by (310) and (311),

sin. [#+£(v + Vi)] _ tang.fr(q)-f cnj
(452)

(453)

sin. J (V —V^) tang. J n

cos,
[g+^^+ ^a)] __ tang. 1(g) ! -co)

cos. £ (v— Vj) tang. £ 7i

Now in calculating the parts of y 1
— %p and Wj — to, which

are proportional to the time, we may, since y and xp 1
differ but

little as well as w and Ml9 and since n is small, put

2r -fi(v+ ^i)= ?* sin - 5-(^— V' 1 ) = ^(V— vjsin. 1"

tang. | n— £ 7T tang. 1" — £ tt sin. 1" = ^ (0".48892) t
1
sin. 1"

£(«+ »!)=«', tang.JK— w
)= i(wi— w)sin.l'

cos. £ (v — v^) p 1,

which, subtituted in (452) and (453), give

yj
— yj 1

z=z (T.48892 t sin. tt cotan.
»'

(454)

Wl — co — ".48892 * cos. n, (455)

which are thus computed,

0".48S92 9.68924 9.68924

171° 36' 10" cos. 9.99532, sin. 9.16446

— 0".48368 9.68456n

23° 28' 18" cotan. 0.36229

0". 164431 9.21599

that is, », — a, =— 0".48368 t (456)

y— y 1
— 0".164431* (457)
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Change of mean obliquity and longitude.

or mi =z 23° 28' 18"— '.48368 I (458)

fl =~ 50".340499 t — 0".l 64431 t — 50M76068 t. (459)

But, in computing the parts of Wj — w and y — y %9 which

depend upon t 2
}
we need only retain the part depending upon

t 2 in the value of tang. J n, and neglect these pajrts in the

other terms of (452) and (453), we thus have

sin. [tz+
-J- (v+ vi )] = sin, (n+ 45".08 1) (460)

z= sin. n-\- 45".08 £ sin. i". cos. n

cos.[^4-^(^+ ^
1
)]z=cos.(n)—45 //.08/sin. l"sin. n (461)

'tan.^=ffi sin. I"=£sin. l
//

(0
//.48892 If— 0".00000307 1 9 *2 (462)

cotan. £ (co -f ij) — cotan. (o>— .24184 *, (463)

_ l-j-0'.24184*sin. Ftang «'

Z
tang. W— "34184 t sin. 1"

= cotan. J+ 0' .24184 t sin. 1" ( I + cotan. 2 o')

= cotan. a/
-f-

//.24L84 * sin. \" cosec. 2 ^

cos. J (v— ¥ t )
= l| sin. ^ (v— Y^) == £ (^— Vjsin. I"

sin. £ (Wj— w) = J (Wj — w) sin. 1"

which, substituted in (452) and 453), give

v,—1//
1
=0 //

. 164431 *+ //.48892*2 sin. 1"45".08 cos. n cotan. «>'

-f '.48892 * 2 sin. 1" X //.24184sin. n cosec. 2 w (464)

— (K0000030719 t 2 sin. 77 cotan. to'

to
t
— cd —_ ".48368 *— (K48892*2 sin. 1"45".08 sin. n

— / .0000030719 t2 cos. 77,
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Change of mean obliquity and longitude.

which are thus computed,

0".48892 9.68924

1" sin. 4.68557

45".08 1.65398

171° 36' 10" sin. 9.16446 cos. 9.99532n

—-0".000015605 5.19325

+ 0^.000003039 0".0000030719 4.48741

—0".000012566 4.48273R

0".0000030719 4.48741

171° 36' 10" sin. 9.16446 cos. 9.99532n sin. 9.16446

23° 28' 18" cotan. 0.36229 0.36229 cosec* 0.79958

—0".000001033 4.01416

45".08

0".48892

0".24184

sin. 1 ' 4.68557

1.65398

9.68924

4.68557

9.68924

—0".000243445 6.38640,,

9.38353

0".000000528 3.72238

—0.000243950

so that y— xp
1
= 0". 164431 1 — 0".000243950 t*

«
1
—toz=—0".48368 t — 0".000012566 W

Vj
t
=z 50".176068 *— 0".0001217945 12 + 0".000243950 1*

— 50".176068 t -f 0".000122156 t* (465)

w x
zz: 23° 28' 18"— 0".48368 t— 0".000002724 *2 (466)

24*
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Precession of the equinoxes.

or more accurately, from BesseFs Fundamenta Astronomic,

V', =s= 50".176068* + O'.OOO 1221483 t2 (467)

w, =± 23° 28' 18"— 0".48368 t— 0".00000272295 t (468)

These values were afterward changed by Bessel in his

TabulcB RegiomontancB to

V = 50".37572 * — 0' .0001217945 t
2 (469)

y, z= 50".21129 t + 0'.0001221483 tf . (470)

to, =z 23° 28' 18"— 0".48368f— //.00000272295 ^ (471)

Bat these formulas were obtained from the physical theory,

and are, as Bessel says, subject to errors, on account of the

uncertainty with regard to some of the data ; so that we shall

adopt Poisson's formulas, because they agree in the variation

of the obliquity almost exactly with BesseFs observations, and

shall change the value of »' to that determined by Bessel from

observations; our formulas are, then,

w' = 23°28'17".65 (472)

y = 50".37572 t— 0.
//00010905 t2

-
(473)

V I
= 50 //.22300 t + 0."0001 1637 t 2 (474)

w ~ 23° 28' 17".65 -f 0".0000800i t
2 (475)

»
t
= 23° 28' 17".65— 0".45692 t— 0".000002242 1 2 (476)

If, now, the value of y x
is added to that of d 4 (449), the

resulting value is the total change of a star's mean longitude.

81. The backward motion y t
of the equinoxes is

called the precession of the equinoxes.
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Change of mean equator.

82. Problem. To find the intersection of the mean
equator with the equator of 1750 and its inclination to it.

Solution. Produce A Q and AQ' (fig. 41.) till they meet at

T, and let

AT— *, AT— <*>',

and the triangle ATA 1 gives, by (291, 295, and 310),

cos. J (to
7— w) : cos.J (a/ -{- w)=ztang.J v : tang. £(<*>'—<£>) (477)

sin. £ (ex)'— w) : sin.J (a/ -|- w)z=tang.J v : tang.J( *'-)-*) (478)

sin. J (#'-(-#): sin.J (</>'—*):=: cotan. J J
7

: cot. $ (o'-fco) (479)

so that t 2 may be neglected in all the terms but y, and we

have

1 : cos. »' ±= £ V» sin. 1" : | (*' — <?>) sin. 1" (480)

: sin. J = £ y sin. 1"
: tang. £ (<£'+<*>) (481)

1 : | (** — «£) sin. 1" = tang. j'i J.
T sin. 1". (482)

Hence £ (*' + *) = 90° (483)

i (*' — tf>) = £ * cos. co
7 (4S4)

y = (<*>/ __ i) tang, co
7

, (485)

which are thus computed,

a,' cos. 9.96249 cos. 9.96249

25" 18786 1.40120

23". 103 1.36369

0".000054525 5.73660

o".oooo50oi3 5.69909

co> tang. 9.63771 9.63771

10//.032 1.00140

0".000021717 5.33680
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Change of mean right ascension and declination.

so that

& = 90° — 23". 103 1 + 0'.000050013 t* (486)

T — 20".0640 1 — 0".000043434 t 2 . (487)

83. Problem. To Jind the variation of a star's mean
right ascension and declination.

I. The variation, which arises from the change of the equa-

tor's inclination, may be found precisely in the same way in

which the variations of latitude and longitude were found in

§ 78, for a similar change in the position of the ecliptic ; so

that formulas (448) and (449) give, by substituting for -^, L
and 7i,

A = #' s R. A. — 90° + 23".103 t =: R — 90

L = #'s Dec. = D, tv~ T

3D z= — T cos. R (488)

8R~ T sin. R tang. D
; (489)

or instead of counting the value of T and t from 1750, they

may be reduced to the beginning of each year, and the square

of t may then be neglected.

II. The variation in right ascension is to be increased by

the change in the position of the equinox, arising from its

precession, which is thus found. Had the ecliptic remained

stationary, the equinox would have removed from A to A\ so

that if AP is perpendicular to the equator, we should have

for the increase of right ascension by (475) and (484),

AP = AA! cos. AAP = y cos. « (490)

= (*' — <*>)

= 46 //.206 t — G^.000100026 t2 .
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Change of mean right ascension.

But the equinox advances upon the equator from the motion

of the ecliptic by the arc A'A lt which is thus found. We
have, by (291),

cos.^-(co
1
— w):cos.

]
J(a) 1 + co) = tang. £ 4'^ :tang. £ (y—yj

But COS. z(o) 1
w) zzz 1

cos. £ (co
1 -f w) = COS. (a;' — 0".22846 *

)

— cos. a/ + 0'.22846 1 sin. 1" sin. J

sec. 2- (
w

j + w) = sec. «' — '.22846 1 sin. 1" sin. w' sec. 2 w'

tang. £ il'J , = i yi'4 j sin. I"

tang.£(v/— Vi|= i(v — Vi) sin - j"

== J sin. 1" (0".15272 * — 0".00022542* 2
)

whence A ,A
1
= 0". 15272 1 sec. w

— 0' .00022542 *2 sec . */

— 0' .22846 t2 ; 15272 t2 sin.l" tang. w> secV

which is thus computed,

".15272 9.18390 9.18390

sec. 0.03751 0.03751 0.03751

0U665 9.22141

0".00022542 6.35299

,/

.00024575 6.39050

0".22846 9.35881

tang. 9.63771

1" sin. 4.68557

2.90350
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Nutation.

so that

A'A
t
— 0".1665 t — 0".00024575 t2

, (491)

and, by (489) and (490),

dR— 46".0395 1+ 0".00016593 12 + Tain.R tang, D. (492)

84. By the motions of precession and of diminution

of the obliquity, the mean pole of the equator is carried

round the pole of the ecliptic, gradually approaching

it ; but the true pole of the equator has a motion round

the mean pole, which is called nutation. This motion

is in an oval, at the centre of which is the mean pole,

and is such that the position of the mean equinox dif-

fers from that of the true equinox by the longitude

d \ong.=i sin. £1+ ^ sin. 2 Sl+i2 sin. 2j>+ i 8
sin.2© (493)

where

£l = the mean longitude of that point of intersec-

tion of the moon's orbit with the ecliptic,

through which the moon ascends from

the south to the north side of the ecliptic,

and which is called the moon's ascend-

ing node,

J) = the moon's true longitude,

© =. the sun's true longitude.

The values of i, i lf i2 , i
3

are given differently by different

astronomers, and those which are, at present, adopted in the

Nautical Almanac are

i — — 17'.2985, i
x
= 0".2082 (494)

i2= — 0".2074, » 8 = — 1 '.2550.
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Nutation.

This nutation of the pole causes also the true obliquity of the

ecliptic to change from the mean obliquity by the quantity

^ 1
=kcos.^l+ k

1
cos.2£i-\-k2 cos.2j>+ k

s cos.2Q (495)

in which the values of k &c, at present adopted in the Nauti-

cal Almanac, are

k & 9".2500, k
1
=z — 0".0903 (496)

k2 = 0".0900, k
3 = 0".5447.

85. Corollary. The effect of nutation upon the right

ascensions and declinations of the stars may be com-

puted by § 83, and the formulas which are obtained

agree with those given in the Nautical Almanac, and

which depend upon the terms, called C and D in the

formulas for Reduction of the Almanac ; these terms

contain also the changes arising from the mean motion

of the equinoxes, and the formulas are so reduced that

t is counted from the beginning of each year.

86. Examples.

1. Find the mean obliquity of the ecliptic for the year 1840,

and reduce the formulas for finding the variations of right as-

cension and declination to the beginning of that year.

Solution. In (476) let t = 1840— 1750 = 90,

and it gives

m
%
= 23° 28' 17".65 — 41".12 — 0'.02 =: 23° 27' 36' .51.

In (487, 488, and 492) let t hn 90 + *', and neglect the

terms depending upon t'
2

t
so that
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Change in right ascension and declination.

T = 30' 5".76 — 0'.35 + 20".0640 1
1 — 0".0078 1

1

z=30' 5".41 + 20".0562t",

and the mean variations, counted from the beginning of the

year, are

* D — 20".0562 1 cos. R
$ R = 46//.0693 t

1 + 20".0562 t
1
sin. R tang. D.

Finally, the variations arising from nutation are thus found.

The change in the obliquity of the ecliptic gives at once, from

(448) and (449), by referring the positions to the mean eclip-

tic instead of to that of 1750,

* D = — a Wl sin. R
d' R = — <5 Wj cos. R tang. D,

and the change in the position of the equinox gives by (485,

488, 489, and 490),

2T = — a A sin. Wl

d'D= $ A sin. m
1
cos. J?

d' Rz=z 3 A cos. w
x

-{- $ A sin. w
1

sin. 12 tang. D.

Hence, if we take

46//.0693 C = 46".0693 t" + <M cos. »,

c == 46".0693 + 20".0562 sin. 12 tang. 1>

c'= 20".0562 cos.JR

d — cos. R tang. X)

e£= — sin R

we have ° = ^ + 46^693^= ^ + 2^^562 ^
— t

e — 0.3448 sin. & + 0.00415 sin. 2 &
— 0.00413 sin. 2 J> — 0.02502 sin. 2 O,
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Nutation in right ascension and declination.

and the entire changes of declination and right ascension are

^ D — Cc' — da.d'

V R —. Cc —du.d,

which agree with the formulas in the Nautical Almanac, ex-

cept in the coefficients of V , which are 46".0206 and 20".0426

instead of 46 //.0693 and 20".0562.

If, again, we take

/ == 46".0693 C,

g cos. G = 20 //.0562 C, g sin. G = — d »,

the above formulas become

d'D= gcos. Gcos.R—gsin. 6rsin. R =: g cos. (G+ R)

<*'R —f-{-gsm.

R

cos. Gtang. D-\-g sin. Gcos. R tang. D

=f+g sin. (R+ G) tang. D,

as in the Nautical Almanac.

2. Find the annual variations in the right ascension and

declination of « Hydrae for the year 1840, and its true place

for mean midnight at Greenwich, Jan. 1, 1840; its mean right

ascension for Jan. 1, 1839, being 9* 19w 40*.620, and its decli-

nation — 7° 57' 49'.50, and using the numbers of the Nautical

Almanac.

25
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Nutation in right ascension and declination.

Solution.

20".0426 1.30195

R=z9h 19CT 40*.620 cos. 9.8S374*

(jD=- 15".335 1.18569"

D =— 7° 57 49".50

* R = 46".0206 — 1' .8051

= 44".2155 = 2'.948

1.30195

sin. 9.80872

tang. 9.14584"

0.25651*

Hence its mean place for Jan. 1, 1840, is

R — 9h 19- 43s.568

D —-T 58' 4".83.

To calculate the effects of nutation, we have

a = 339° 40, J) = 242° 30', © = 281° 15'

—0.3448 sin. &= 0.1205, 9".25 cos. & = 8".673

0.00415 sin. 2& =—0.0027,—0".0903 cos. 2&=—0".068

—0.00413 sin. 2 J> =—0.0034, 0".0900 cos. 2 J> =— ".032

—0.02502 sin. 2 © = 0.0096, 0".5447 cos. 2 ©=—0".504

C = f + 0.1240, <5 Wl - 8".049

Pc;=? c' f -f 20".0426 X 0.1240 cos. R
= c't' — 15".335 X 0.1240 z= c< t> — 1".901

— * ».<*' = 8' .049 sin. JE -z 5". 181

Cc= c t> -f 0.1240 X 2*.948 = ct'-\- 0*.365

— I w d= — 8' .049 cos. JR tang.Dm— 0".861 =— 0*.058,
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Nutation in right ascension and declination.

whence the variations arising from nutation are

d< D = 3' .28, d' R = 0*.30,

and the true places are

D = — 7° 58' 1'.55, R = 9* 19" 43s
.87.

3. Find the mean obliquity of the ecliptic for the year 1950,

and reduce the formulas for finding the variations of mean right

ascension and declination to the beginning of that year.

Ans. Wl = 23° 26' 36".18.

*' D = 19".8903 1
1

cos. R
*' Rz=l 46". 1059 t

1 + 197/.8903 t sin. R tang. 2>.

4. Find the annual variations in the right ascension and

declination of /J Ursse Minoris for the year 1839, and its true

place for mean midnight at Greenwich, Aug. 9, 1839; its

mean right ascension for Jan. 1, 1839, being 14A 5lm 14s
.943,

its declination 74° 48 7 48//.89 N., the longitude of the moon's

ascending node for Aug. 9, 1839, being 347° 17 7

, that of the

moon 144° 2 ;

, and that of the sun 136° 30 7
, and using the

constants of the Nautical Almanac, which give for Aug. 9,

1839,

f— 32//
.33, g — 16 '.70, G — 327° 30'.

Ans. Var. in R. A. —~ 0'.277 ; var. in Dec. = U'.ll ;

and for Aug. 9, 1839,

R a 14A 51 CT 16*.36

D = 74° 48' 32// .46.
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Tables XL and XLIII.

5. Calculate the values offt g, and G for April 1, 1839,

mean midnight at Greenwich, when g\, == 354° 10', © = 11°

34', and J) is neglected.

Ans. f— 12'.53, g — 1I"&*, G z= 299° 34.

In Table XL of the Navigator, the decimal is neglected,

and 20 used instead of 20.0562. Table XLIII is calculated

from the formulas of Bessel, which differ a little from those of

Bailly used in the Nautical Almanac. The construction of

these two tables is sufficiently simple from the calculations

already given.
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Sideral and solar day.

CHAPTER VII.

TIME.

87. The intervals between the successive returns of

the mean place of a star to the meridian are precisely

equal, and the mean daily motion of the star is perfectly

uniform ; so that sideral time is adapted to all the wants

of astronomy. The instant, which has been adopted

as the commencement of the sideral day, is the upper

transit of the vernal equinox.

The length of the sideral day, which is thus adopted, differs

therefore from the true sideral or star day by the daily change

in the right ascension of the vernal equinox. But this change

is annually about 50 7/ or 3S
.3, so that the daily change is less

than O'.Ol, and is altogether insensible.

88. Corollary. The difference between the sideral

time of different places is exactly equal to the differ-

ence of the longitude of the places.

89. The interval between two successive upper tran-

sits of the sun over the meridian is called a solar day ;

and the hour angle of the sun is called solar time.

This is the measure of time best fitted to the common
purposes of life.

25*
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Perigee. Apogee.

The intervals between the successive returns of the sun to

the meridian are not exactly equal, but depend upon the vari-

able motion of the sun in right ascension, and can only be

determined by an accurate knowledge of this motion.

90. The want of uniformity in the sun's motion in

right ascension arises from two different causes.

I. The sun does not move in the equator but in the

ecliptic.

II. The sun's motion in the ecliptic is not uniform.

The variable motion of the sun along the ecliptic, and its

deviations from the plane of the mean ecliptic, cannot be dis-

tinctly represented, without reference to the variations of its

distance from the earth, and to the nature of the curve which

it describes. This portion of the subject, therefore, which

involves the determination of the sun's exact daily position,

that is, the calculation of its ephcmeris, must be reserved for

the Physical Astronomy. It is sufficient, for our present

purpose, to know that the sun moves with the greatest velocity

when it is nearest the earth, that is, in lis perigee; and that it

moves most slowly when it is farthest from the earth, that is, in

its apogee.

91. The sun arrives at its perigee about 8 days after

the winter solstice, and at its apogee about 8 days after

the summer solstice. The mean longitude of the

perigee at the beginning of the year 1800 was 279°

30' 5", and it is advancing towards the eastward at the

annual rate of about 11". 8, so that, by adding the pre-

cession of the equinoxes, the annual increase of its

longitude is about 62".
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Mean and apparent time; equation of time.

92. To avoid the irregularity of time arising from the

want of uniformity of the sun's motion, a fictitious sun,

called a mean sun, is supposed to move uniformly in

the ecliptic at such a rate, as to return to the perigee at

the same time with the true sun. A second mean sun

is also supposed to move in the equator at the same

rate with the first mean sun, and to return to each

equinox at the same time with the first mean sun.

We shall denote the first mean sun by Q 1} and the second

mean sun by © 2 .

93. Corollary. The right ascension of the second

mean sun is equal to the longitude of the first mean
sun.

94. The time which is denoted by the second mean
sun is perfectly uniform in its increase, and is called

?nean time; while that which is denoted by the true

sun is called true or apparent time; the difference be-

tween mean and true time is called the equation of

time.

95. The time which it takes the sun to complete a

revolution about the earth is called a year.

The time which it takes the mean sun to return to

the same longitude is the common or tropical year.

The time which it takes it to return to the same star

is the sideral year ; and the time which it takes it to

return to the perigee is the anomalistic year.
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Year. Leap year.

The length of the mean tropical year is

F= 365d 5h 48" 4V.808, (497)

so that the daily mean motion of the sjn is found by the pro-

portion

Y : l
d = 360° : daily motion = 59' 8".3302. (498)

96. The fraction of a day is necessarily neglected in the

length of the year in common life, and the common year is

taken equal to 365d
. By this approximation, the error in four

years amounts to

23* 15- 1P.232 = l d — Um 48*. 768, (499)

or nearly a day, and an additional day is consequently added

to the fourth year, which is called the leap year. At the end

of a century the remaining error amounts to nearly — d
.75,

which is noticed by the neglect of three leap years in four

centuries. For practical convenience, those years are taken

as leap years which are exactly divisible by 4, and the centu-

rial years would thus be leap years, but only those are re-

tained as leap years which are d. visible by 400.

97. When the mean sun has returned to the same mean

longitude, it has not returned to the same star, because the

equinox from which the longitude is counted has retrograded

by 50" .223, so that the mean sun has 50 ; .223 farther to go,

and the time of describing this arc is the fourth term of the

proportion

59' 8'.3302 : l
d = 50//.223 : 20m 22a

.786, (500)

so that the length of the sideral year is

Y
t
= Y+ 20* 22s.786 = 365d 6h 9m 10'.594. (501)
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Tables LI and LII. Reduction of solar to sideral time.

98. The length of the mean solar day is also different from

that of the sideral day, because when the © 2 , in its diurnal

motion, returns to the meridian, it is 59 / 87/.3302 advanced

in right ascension ; so that 360° 59' 87/.3302 pass the meridian

in a solar day, instead of 360°, which pass in a sideral day.

Hence the excess of the solar day above the sideral day, ex-

pressed in solar time, is the fourth term of the proportion

360° 59' 8".3302 : 59' S'.3302 — l
d

:

d.0027305

or Zh 55-.9094

;

(502)

that is, 1 sid. day = 0.9972695 sol. day,

or 24A
sid. time a= 23* 56m 4s.O906 of solar time

; (503)

which agrees with (335) and the table for changing sideral to

solar time in the Nautical Almanac, and with table LII of the

Navigator.

In the same way this excess expressed in sideral time is

the fourth term of the proportion

360° : 59' 8V3302 = l
d

:

d.002738 or 3m 56s 5554

;

that is, 1 sol. day = 1.002738 sid. day, (504)

or 24* sol. time == 24* Sm 56s.5554 sid. time
j (505)

which agrees with the table for changing solar to sideral time

in the Nautical Almanac, and with table LI of the Navigator.

The remainder of tables LI and LII, as well as the corre-

sponding ones given in the Nautical Almanac, are calculated

by simple proportions from the numbers which are given for

24\

The sideral day begins with the transit of the true vernal
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equinox. At the time of the transit of © 2 , then, that is, at

mean noon, we have

the sid. time := R. A. of © 2 from the equinox

zs R. A. of © 2 from mean equinox

-}- Nutation of equinox in R. A.

=2 sun's mean long -[-Nutation in R. A. (506)

99. The sun's mean long, for Jan. 1, 1800, at Paris, was

found by Bessel to be 279° 54' 11 ".36. Its longitude for

Jan. 1, of any other year t, may thus be found. Let f be

the remainder after the division of t by 4, the number of days,

then, by which Jan. 1 of the year t is removed from Jan. 1,

1800, is

365^ (t —f) + 365/ z= t. 365^ - \ f
ss Y.t + t.llm \2°.l92— if (507)

ss Y. t + t .

d.00778— if.

But in Yt days the sun's longitude increases exactly £.360°,

which is to be neglected ; and its increase in longitude is

59' 8".3302 (*+0.00778—lf)—t.21"M—f. 14' 47".083, (508)

or more accurately from Bes el, the mean longitude E, for the

the first of January of the year 1800 + ' at Paris, is

E = 279° 54' 1".36 + 1 27".605844 + 1*. 0".0001221805

—/, 14' 47".083. (509)

The mean longitude is found for the first of January, for

any other meridian by the following proportion, derived from

the interval of time between the © 2 >s passage over this me-

ridian and that of Paris.

24* : long, from Par. ss 59 / 8 //.3302 : change in value of E. (510)
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Sideral time converted to solar time.

The sun's mean longitude for any mean noon n of the year

after that of the first of Jan. is

E + n.59' 8'.3302. (511)

Hence the sideral time of the mean noon n is

•pi

&= - + ».3W 56^.555348 + Nutation in R. A. (512)

so that the solar time of the transit of the equinox from the

preceding noon is

24* — S (converted into solar time). (513)

100. Examples.

1. Find the sideral interval which corresponds to 10* of

solar time.

Ans. 10 l
m 38s

.5647.

2.' Find the solar interval which corresponds to 10* of si-

deral time.

Ans. 9* 58" 2K7044.

3. Find the sideral interval which corresponds to 10w of

solar time.

Ans. 10m P.6428.

4. Find the solar interval which corresponds to 10* of si-

deral time.

Ans. 9m 5S'.3617.

5. Find the sideral interval which corresponds to 10* of

solar time.

Ans. 1C.0274.
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6. Find the solar interval which corresponds to 10* of si-

deral time.

Ans. 9*.9727.

7. Find the sideral interval which corresponds to
5.85 of

solar time.

Ans. C.85233.

8. Find the solar interval which corresponds to
S.85 of

sideral time.

Ans. S.84768.

9. Find the sun's mean longitude at Greenwich for the

mean noon of April 4, 1839, the sideral time at this noon, and

the solar time of the transit of the vernal equinox from the

preceding noon; the meridian of Greenwich is 9m 21 s.5 wes,

of that of Paris.

Ans. The sun's mean longitude = 12° T 3".02.

The sideral time of mean noon = 48m 3P.27.

Time of tran. of ver. equi. == April 3d, 23* 1 l
m
39*.6S.

101. Problem. To find the time by observation.

Solution. First Method. By equal altitudes.

I. If the star does not change its declination. Observe the

times when the star is at equal altitudes before and after pass-

ing the meridian ; the arithmetical mean between these two

times is the time of the star's passing the meridian, which

compared with the known time of this passage, gives the error

of the clock at this time, and the correction of this error gives

the time of each observation.
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IT. When the declination of the star is changing, the time

of the star's arriving at the observed altitude A is affected

;

thus if

L sr the latitude,

D z= the declination at the meridian,

d D =i the increase of declination from the meridian,

h — the hour angle, supposing no change in the decli-

nation,

dh — the increase of the hour angle in time,

we have, by (380),

sin. A — sin. L sin. D -f- cos. L cos. D cos. h (514)

= sin. L s'm.(D-\- 3 D) -\- cos.L cos.(D-{-d D)cos (h-\-3h)

=. s'm.L sin.D-{-dD sin. I" sin.L cos.Z>-|- cos.Z cos.ZJcos.A

— 3D sin. 1" cos.Zsin. Dcos.h— 15<j h sin.l" cos.Z cos.D sin. h,

whence

zz: <J D sin. L cos. D — $ D cos L sin* D cos* /*

— 15 3 h cos. L cos D sin. h

qJi=z T̂ dD tang. L cosec. h— T\<$D tang. Z> cotan. A

15 cotan. Zi sin. h 15 cotan. i> tang. K (515)

and since the two observations are at nearly the same distance

from the meridian, the value of S7i is the same for both of

them ; so that their mean is augmented by <J h> and d h is

consequently to be subtracted from the mean of the observed

26
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times, in order to obtain the true time of the star's passing the

meridian.

In calculating the value of 3 h, its two. terms may be calcu-

lated separately. Now if &D is the daily variation of the

star's declination, we have

hi'D 2h#D /e%aK
'D = -*4T -5X24* (516)

and in using proportional logarithms, the proportional logarithm

of the hours and minutes of 2 h, which is the elapsed time,

may be taken as if they were minutes and seconds, provided

the same is done with the 2-i
h
in the denominator. Finally,

the value of <5 h is reduced from minutes and seconds to sec-

onds and thirds by multiplying by 60, so that if M is taken

for the denominator of either of the parts of (515), this part P
is calculated by the formula

Prop. log. P=

—

Prop. log. g
* 2^* 15

+ log.M+Prop.log.2 h

+ Prop. log. 6' D, (517)

which agrees with [B. p. 219.], for

—Prop. log.
*

Q

A
-=— Prop. log. 12-=— 1.1761

= 8.8239. (518)

III. If the altitude at the two observations had differed

slightly, the mean time would require to be corrected ; for this

purpose, let

3A = the excess of the second altitude above the first,

3 h z= the increase of the hour angle,
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and we easily deduce from (514)

cos. A 3 A =z — 15 cos. L cos. D sin. h dh
t (519)

xi. , 7 cos. ^4 * A ,^™ v
so that s h = — — = pr^—r. (520)

15 cos. Lt cos. i> sin. Ii

The time of the second observation being thus increased by

dh, that of the mean is increased by J dh, which is, therefore,

the correction to be subtracted from this mean.

The corrections (515) and (520) must be both of them ap-

plied when the star is changing its declination, and at the

same time the observed altitudes are slightly different.

Second Method. By a single altitude. [B. p. 208-218.]

When a single altitude is observed, there are known in the

triangle PZB (fig. 35.), the three sides, to find the hour angle

ZPB, which is thus found by (277),

*

s = J (z + 90° — L + p) (521)

cos.J^v(-^^ (^-V (522)2 ^ \sin.(90°— JL)sin.p/'
v

'

which corresponds to [B. p. 210.]

The hour angle may also be found by (282), thus if we put

s< = i(A + L+p), (523)

we have

5= J (180°— A— Z,+jp)=z90°— s
f+pz=90o—A—L+s<

s—p = 90°— s'
>

s— (90° — L)=zs'— A,

whence
• -.t ./'cos. s

f sin. (s*— A)\ /co<\
sin. i h = \/| ^A - I, (524)2 ^ \ cos. L sin. p ]

which corresponds to [B. p. 209.]
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Third Method. By the distance from a fixed terrestrial

object.

If the position of the terrestrial object has been before de-

termined, its hour angle and polar distance may be considered

as known.

Hence, if T (fig. 40.) is the position of the terrestrial object

projected upon the celestial sphere, P the pole, and S the

star. Let the distance TS be observed, and let

PT=P, PS — Pt TS=d,

TPZ — H, TPS = h'
t
SPT— h,

s=zi(P+p + d), (525)

we have

or

.iV=V(^L^^SL=i)\ (526)
\ sin. P sin. p J

v '

17/ ,/sin.s sin. (s— d)\ ,•*-*
s. i h'— V (

—
: =-3 1 I

,

(527)*
\ sin. P sin. y /

v
'

h=z H+h'.

If the polar distance and hour angle of the terrestrial object

is not known, but only its altitude and azimuth, the polar dis-

tance and hour angle can be easily found by solving the tri-

angle PZT.

Fcurth Method. By a meridian transit. [B. p. 221.]

If the passage of a star is observed over the different wires

of a transit instrument, the mean of the observed times is the

time of the meridian transit, which should agree with the
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Meridian transit. Vertical transit.

known time of this transit. This method surpasses all others

in accuracy and brevity.

Fifth Method. By a disappearance behind a terrestrial

object.

If the instant of a star's disappearance behind a vertical

tower has been observed repeatedly with great care, the ob-

served time of this disappearance may afterwards be used for

correcting the chronometer. For this purpose, the position of

the observer must always be precisely the same. Any change

in the right ascension of the star does not affect the star's

hour angle, that is, the elapsed time from the meridian transit

;

this change, consequently, affects the observed time exactly as

if the observation were that of a meridian transit.

A small change in the declination of the star affects the

hour angle, and therefore the time of observation. Thus, if

P (fig. 44.) is the pole, Z the zenith, ZSS 1 the vertical

plane of the terrestrial object ; then if the polar distance PS
is diminished by

RS — 3 D,

the hour angle ZPS is diminished by the angle

SS'P — $h.

But the S'R is nearly perpendicular to SP, and the sides

of SS'R are so small, that their curvature may be neglected,

whence

RS' = <* D tang. S = 15 cos. D. * A,

so that dhz=L T\dD tang. S sec. D. (528)

26*
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102. Examples.

1. On July 25, 1823, in latitude 54° 20' N., the sun was at

equal altitudes, the observed interval was 6h
l
m 36* ; find the

correction for the mean of the observed t mes. The sun's

declination is 19° 48', and his daily increase of declination

12' 44".

8.8239

tang. 0.0030

1.4759

1.1503

Solution. 8.8239

54° 20' cotan. 9.8559,

6* l
m 36' sin. 9.8510

6m 1* P. L. 1.4759

12' 44" P.L. 1.1503

12*55 1.1570

—2*.28

— 2*.28 1.8968

10*.3 = the required correction.

2. On September 1, 1824, in latitude 46° 50' N., the inter-

val between the observations, when the sun was at equal alti-

tudes, was 7* 46'" 35*; the sun's declination was 8° 14' N.,

and his daily increase of declination — 21' 49"; what is the

correction for the mean of the observations ?

Ans. 16*5.

3. On March 5, 1825, in latitude 38° 34' N., the interval

between the observations, when the sun was at equal altitudes,

was 8* 29™ 28'; the sun's declination was 6° 2' S., and his

daily increase of declination was 23' 9"; what is the correction

for the mean of the observations?

Ans. 15'.4.
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4. On March 27, 1794, in latitude 51° 32' N., the interval

between the observations, when the sun was at equal altitudes,

was 7h 29* 55s
; the sun's declination was 2° 47' N., and his

daily increase of declination 23' 26"; what is the correction

for the mean of the observations 1

Arts. — 21'.7.

5. In latitude 20° 26' N., the altitude of Aldebaran, before

arriving at the meridian, was found to be 45° 20', and, after

passing the meridian, to b? 45° 10'; the interval between the

observations was 7h 16m 35% and the declination of Aldebaran

was 16° 10' N. j what is the correction tor the mem of the

observations ?

Arts. 19s
.

6. In latitude 3G° 39' S., the sun's correct central altitude

was found to be 10° 40', when his declination was 9° 27' N.

;

what was the hour angle ?
,

Ans. 7h 23w 51*.

7. In latitude 13° 17' N., the sun's correct central altitude

was found to be 36° 37% when his declination was 22° 10' S. ;

what was the hour angle ?

Ans. 9* 17m 88
.

8. In latitude 50° 56' 17" N., the zenith distance of a ter-

restrial object was found to be 90° 24' 28", and its azimuth

35° 47' 4" from the south ; what were its polar distance and

hour angle ?

Ans. Its polar distance =s 121° 6' 43"

Its hour angle = 2* 52w 16s
.
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9. From the preceding terrestrial object three distances of

the sun were found to be 78° 9' 26", 77° 39' 26", and 77°

29' 26", when his declination was 14° 7' 13" S. ; what were

the sun's hour angles, if he was on the opposite side of the

meridian from the terrestrial object?

Ans. %h 45™ 49s
, 2h 43m 27% and 2* 42w 39'.
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By measurement, signals, chronometer.

CHAPTER VIII.

LONGITUDE.

103. Problem. To find the longitude of a place.

First Method. By terrestrial measurement.

If the longitude of a place is known, that of another place,

which is near it, can be found by measuring the bearing and

distance ; whence the difference of longitude may be calcu-

lated by the rules already given in Navigation.

Second Method. By signals.

The stars, by their diurnal motion, pass round the earth

once in 24 sideral hours ; hence they arrive at each meridian

by a difference of sideral time equal to the difference of longi-

tude. In the same way, the sun passes round the earth once

in 24 solar hours ; so that it arrives at each meridian by a

difference of solar time equal to the difference of longitude.

The difference of longitude of two places is, consequently,

equal to their difference of time. Now if any signal, as the

bursting of a rocket, is observed at two places ; the instant of

this event, as noticed by the clocks of the two places, gives

their difference of time.

Third Method. By a chronometer.

The difference of time of two places can, obviously, be

determined by carrying a chronometer, whose rate is well
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ascertained, from one place to the other ; and if the chronom-

eter did not change its rate during the passage, this method

would be perfectly accurate.

Fourth Method. By an eclipse of one of Jupiter's satel-

lites. [B. p, 252.]

The signal of the second method cannot be used, when the

places are more than 20 or 30 miles apart; and, when the

distance is very great, a celestial signal must be used, such as

the immersion or emersion of one of Jupiter's satellites. For

this purpose, the instant when any such event would happen to

an observer at Greenwich is inserted in the Nautical Almanac

;

and the observer at any other place has only to compare the

time of his observation with that of the Almanac to obtain his

longitude from Greenwich.

Fifth Method. By an eclipse of the moon. [B. p. 253.]

The beginning or ending of an eclipse of the moon may
also be substituted for the signal of the second method to de-

termine the difference of time.

Sixth Method. By a meridian transit of the moon. [B. p. 431.]

The motion of the moon is so rapid, that the instant of its

arrival at a given place in the heavens may be used for the

signal. Of the elements of its position its right ascension is

changing most rapidly, and this element is easily determined

at the instant of its passage over the meridian by the differ-

ence of time between its passage and that of a known star.

The instant of Greenwich time, when the moon's right ascen-

sion is equal to the observed right ascension, might be deter-
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jnined from the right ascension, which is given in the Nautical

Almanac for every hour. But this computation involves the

observation of the solar time, whereas the observed interval

gives at once the sideral time of the observation.

The calculation is then more simple, by means of the table

of Moon -Culminating stars given in the Nautical Almanac, in

which the right ascensions of the suitable stars and of the

moon's bright limb are given at the instant of their upper

transits over the meridian of Greenwich, and also the right

ascension of the moon's bright limb at the instant of its lower

transit. Hence the difference between the right ascensions of

the moon's limb, at two successive transits, is the change of

its right ascension in passing from the meridian of Greenwich

to that which is 12* from Greenwich ; so that if the motion in

right ascension were perfectly uniform, the right ascension,

which corresponded to a given meridian, or the meridian,

which corresponded to a given right ascension, might be found

by the following simple proportion,

12* : long, of place = diff. of right ascensions for 12* :

diff. of right ascensions for long, of place, (529)

in which the longitude of the place may be counted from the

meridian 12* from that of Greenwich, provided the change of

right ascension for an upper transit is computed from the pre-

ceding right ascension, which is that of a lower transit at

Greenwich, that is, if the place is in east longitude.

Let then T =r: long., if west,

or =12* — long, (if the long, is east)

;

and let A z= diff. of right ascension for the Greenwich

transits, which immediately precede and

follow the required or observed transit,
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and let d A = change of right ascension from the pre-

ceding Greenwich transit to the ob-

served transit,

and we have, by (529),

12* : T— A :tA, (530)

A T 12* a A
whence 6 A—-, and T = —j—, (531)

1/Z A.

and if T is reduced to seconds, we have

iA =mm <
532

>

log. « A = log. A + log. T + (ar. co.) log. 43200

— ]og. A + log. T+ 5.36452 (533)

J, 43200M
§ JL-'

and T =s (534)

log. r = 4.63548 -f ar. co. log. 4 + log. S A, (535)

and formulas (533) and (535) agree with the parts of the rules

in the Naviga or, which depend upon A, and are independent

of the want of uniformity in the moon's motion.

The corrections which arise from the change of the moon's

motion may be calculated, on the supposition that this motion

is uniformly increasing or decreasing, so that the mean motion

for any interval is equal to the motion which it has at the mid-

dle instant of that interval. If we put, then,

B zz the increase of motion in 12*, (536)

A is not the mean daily motion for the interval of longitude T
and the instant J T after the meridian transit at Greenwich,

but for the interval 12* and the instant 6* after this transit.

The mean daily motion for the instant £ T is, therefore,
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{6>-j T) B

(538)

so that the correction for A is

(6
A --jT)B _ (21600 8— j T)B

12*
"~ ""43200

and the correction of 3 A in (532) is

r(2i600--jr) r(4320o-r
)'*-

(43200r B~ 2 (43200)2~
B

' (539)

and the value of d B is easily calculated and put into tables,

like Table XLV of the Navigator.

In correcting the value of T (534), the correction of <S A is

to be computed from Table XLV by means of the approxi*

mate value of T, and the correction of T is then found by the

formula to be

,r=i™i! (540)

It only remains, to show how to find the value of B from

the Nautical Almanac. Now if A' denotes the motion in right

ascension for the 12 A interval of longitude, which precedes

that to which A corresponds ; and if A" denotes the motion

in right ascension for the 12 h interval of longitude which fol-

lows that of A ; we have

2 B = A' ' — A'

B = i (A" — A% (541)

and the calculation agrees entirely with that given in the

Navigator.

When the longitude is small, or nearly 12*, the correction

for the variation of motion may be neglected, provided, instead

27
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of A, the motion is used which corresponds to the time of the

nearest Greenwich transit. Now, in the Nautical Almanac,

this motion is given for an hour's interval, of which the mid-

dle instant is that of the transit, so that if H= this hourly

motion, the motion for the time T may be found by the for-

mula

l
h

: TzzzH.dA,

whence
SA X l

h _ 2600- X ' A
Ta _ _ F (542)

log. T=z 3.55630 + log. 9 A + (ar. co.) log. H, (543)

which agrees with [B. p. 432.]

The formula (543) may be rendered more correct, if the

value of H is taken for the instant J T of longitude ; and

the value can be computed precisely in the same way in

which the right ascension was computed for the time T
t
by

noticing the want of uniformity in its increase ; and the for-

mula thus corrected is accurate for small differences of longi-

tude.

Seventh Method. By a lunar distance.

The distance of the moon from the sun or a star may be

used as the signal ; but the true places of these bodies differ

from their apparent places, as will be shown in succeeding

chapters, so that the observed distance requires to be corrected
;

and the correction cannot be found without knowing the alti-

tudes of the bodies. It is sufficient, for the present purpose,

to know that the difference between the true and apparent

places is only a difference of altitude, and not one of azimuth,

and that the apparent place of the sun or a star is higher than

its true place, while that of the moon is lower. The true dis-
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tance may, then, be calculated from the observed distance by

one of the following methods.

I. Let Z (fig. 45.) be the zenith, S the apparent place of

the sun or star, and S' the true place, M the apparent place

of the moon, M' the true place ; let

a as the star's apparent alt. as 90° — ZS

a' as its true alt. as 90° — ZS 1

b as the. moon's app. alt. as 90° — ZM
b' — its true alt. = 90° — ZM1

E sa the app. dist. as SM

E' as the true dist. — S 1M'

Z as the angle Z .

a 6 as ATM7 as b' — 6

Then the triangles ZSM and Zff'Jf' give, by (273),

2(cos. i**= cos ' jE+cos-(a+6)^cos^/+COS - (a/+6/)
(544)

^ ' ^ ' cos. a cos. 6 cos. a1 cos. &'

cos. a' cos. &' /riC v

Let cos. w as =r r, (545)
2 cos. a cos. 6

and we have, by (544),

cos.E/ -\-cos.(a, -^b ,

)= 2cos.mcos.E-^2cos.mco3.(a+ b)

z=zcos.(E+m)+cos.(E—m)+cos.(a+6+m)+cos.(a+6—m)

cos. JEJ' as— cos. (a'+ 6') + cos. (E+ m)+ cos. (JS—m)

+ cos. (a+ 5 + m) + cos. (a + 6— w), (546)
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whence E' can be found by a table of natural sines and co-

sines, when m has been found from (545).

II. In the same way by (279), we find

2(sin.iZ)^
C-^=^^= C-2!l^^)-^' (547)

cos. a cos. o cos. a' cos. b'

cos. (af— b')— cos. E'= 2 cos. m cos. (a— b)— 2 cos. m cos.E
z=z cos. (a—b-\-m)-\-cos.a—b—m)—cos.(E-\-m)—cos. (22

—

m)

cos.E1 =. cos. (af— b')— cos. {a—b-\-m)—cos. (a—b—m)

+ cos. (E+ m) + cos. (E—m). (548)

III. The correction may be separated into two parts, one of

which depends only upon the sun or star, and the other upon
the moon ; and let

d' E = the part of <? E which depends upon the sun or star,

d"E 5= the part which depends upon the moon.

Now if the correction were only to be made for the moon,
SM would be decreased to SM1

, whence

SM' = E-\-d"E,

and if we put

S=ZSM
t M—ZMSy

s = i (a + t> + E)> (549)

the triangles SMM 1 and SZM give

(sin.^M)^ sin ' Ssin^ 5-=^l
sin. E cos. 6

_ *in.[E+ i(3»E— *b)] sm.j(S"E + S
b)

sin. d b sin. E
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<S"E -4- <* b
[1 + J cotan. E sin. 1". (*" JS— <*&)] (550)r 2^6

60^,^^(59-4^-^) + sin - 5sin>(̂ -" a)
.
-*!£

v ' ' sin. £ cos. 6

+ t18" — i cotan
- * sin - 1" [(*" E )

2 — (
d &)*]• (551)

The triangles SS'M and SZM give, by (277) and (281),

(cos. iS)2 = ^(s-^ls-a)v '
sin. E cos. a

_ sin. [JE+ j (J" JE— 8 a)] sin, £ (<?" .E -f- j a)

sin. d a sin. JS

60'+ rig= (W- *«)+^aUf ;

>
S

j
n^-a

) .^. (553)v ' ' - sm. E cos.a
v

'

If now M 1K and S'L are drawn perpendicular to MS,
and £'£/ to JfcT'jSf, we have nearly

S'M'= E+ 9 E = SM' + SL'— E+ 6"E + SL'

' 9E=9"E+ SL'= 9»E+ 9'E+ (SL ,—lfE) (554)

§'E=.SL= da cos. # (555)

SL'z=*a cos. (£'££') =£ 3 a cos. (S— MSM')

= 8 a cos. S+ ^ a sin. # sin. JBS4P

= *'E + S'L sin. JHSflf' (556)

#£' — d'E = S'L sin. jff&Jf7
. (557)

But from MSK,

sm. MSM1 = —.—=- = ——=—

,

(558)
sin. E sm. E

27*
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whence

SL'-*E = 8-'LXM>K
„

S
'mA

-, (559)
sin. E '

and

ifr^*g+Vj+*A ***'** (560)
1 '

sin. E v '

2°+m= (60' -f* JEJ)+(60'+*
//JEJ)+

gin js (
561

)

in which 1° is added to <S' JE? and <$" JEJ in order to render them

positive. Now, of 60' + 9' E (553), the part 60' — 6 a is

given in table XVII or table XVIII ; and the remaining term is

computed by proportional logarithms, and is the first correction

of the First Method of the Navigator. [B. p. 231.] The pro-

portional logarithm of the factor 2 3 a sec. a, is the logarithm

of the table from which 60'— §a is taken.

In the same way, the two first terms of 60'
-f- d"E are taken

from table XIX and (551). The remainder of (551) com-

bined with the third term of (561), is computed and inserted

in table XX of the Navigator.

In calculating table XX, the value of &" E is used, which

is obtained from the two first terms of (551); and S'L and

M'K are found from S'SL and MKM 1 in which the sides

are so small that their curvature may be neglected, and we
have, nearly

'8'L =z */{8 «2 _ */ E2) (562)

M'K=*/{&b*—j'E*). (563)

IV. The calculation of the values of d a and db will be
fully explained in subsequent chapters ; but we need only re-

mark, in this place^ that the value of <j a for a star is given in

table XII, for the sun it is the number of table XII diminished
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by that of table XIV, and for a planet, it is that of table XII,

diminished by that of table X, A. The value of 8 b is obtained

by the formula

H — P cos. b — 8'b
9 (564)

in which 8
1 b is the number of table XII, and P is the number

taken from the Nautical Almanac, and which is called the

horizontal parallax. In computing table XX, the value of P
is taken at its mean of 57' 30".

In the formulas for the corrections, the zenith distances may

be introduced instead of the altitudes, and if we put

90° — a = Z, 90° — b = Z,

s
1
=zz + Z+ E, (565)

we have, by neglecting the term depending upon the correc-

tion of table XX, as well as the other small quantities,

sin. 5 j sin. (s
1
— z)

cos.^iM—
sin. E sin. Z

_ sin. [E+ j (8"E+ 9 b)] sin. £ (8 b— 9"E)
sin. E sin. 8 b

9 b — 8"E

„ „ . 2 sin. s, sin. (5, — z) ,

d"E = 8b •-,-», ~ * &
sin. E sin. Z

sin.Sj sin. (*. — Z) JE+ da
cos. 2 J 8 = ?—=V L = —j-j

sin. E sin. z 2 8 a

(566)

(567)

2 sin. s. sin. (s. — Z) .

r

—

^ \
*

<*a.^ = ~^-| '
.* ^ v

,

1 L 8 a. (568)
sin. E sin. 2 '

Then the second term of the value of 8'E is the first cor-

rection of the Third Method of the Navigator [B. p. 242.]
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and the second term of the value of $" E is the second cor-

rection of this method ; and the computation from (564, 567,

568) agrees entirely with this method. The third correction

is taken from table XX, as in the first method.

V. Draw ZN perpendicular to MS, so as to make SN
acute. In the right triangles ZSN and ZSM let

B=z90°— SN, B'z=z90°+MN, A = i(B'+ B)
f (569)

and we have

E == 3IN+ SN=B' — B, (570)

and, by Bowditch's Rules for oblique triangles,

cos. ZS : cos. ZM == cos. NS : cos. MN,

or sin a : sin. b = sin. B : sin. B

;

(571

)

and, by the theory of proportions,

sin. a -\- sin. b sin. B -f- sin. B
sin. b — sin. a sin. B 1— sin. B'

that is,

tang. J (a -f- b) _ tang. A
tang. £ (6 — a)

~~
tang. £ E

tang. A = tang. £ (a -j- b) cotan. J- (b— a) tang. J E (573)

B' = A + iE, B — A — ^E, (574)

and the right triangles Z#iV, MZN, SLS 1

, MKM', give

cos. £ =s = cotan. ZS tang. $ZV = tang, a cotan. 2?
d CI

—cos. ilf= -Tjr—— cot « ZMtmg, MN= tang. & cotan. i?'

# E = da tang, a cotan. JB (^75)

<S".E =s <* 6 tang, b cotan. JB', (576)

(572)
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and the formulas (573-576) correspond to the Fourth Method

of the Navigator. [B. p. 243.]

It may be observed, that since cotan. J (6 — a) is the only

term of (573) which can change its sign, A is acute when

b is greater than a, and obtuse when b is less than a.

VI. The most important of corrections of the distance arise

from that term of 8 b (564), which depends upon the parallax.

If we consider this, therefore, as the only correction of the

moon's altitude, we may calculate the corrections of the dis-

tance arising from it by putting

9 b =z MM> = P cos. b. (577)

The triangles ZSM and M'MK, give then

&'E sin. a — cos. E sin. b ,„m~ K

cos. M=z — - ==
:

—- - (578)
x*cos. 6 sin. E cos. 6

d"E s=— P sin. a cosec. E + P cotan. E sin. b, (579)

and if we put

^E' = P sin. a cosec.E (580)

S
2E — ±P cotan. E sin. b, (581)

in which the signs are taken so that <?

2 E is always positive,

we have

d"E=. — \E±*2 E (582)

10° + 8"E — (5° — s
±
E) + (5° ± *

2 E). (583)

Now table XLVII is a common table of proportional loga-

rithms, like table XXII ; but the angle which is placed at the

top of the table is

5° — the angle of Table XXII, (584)
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and the angle at the bottom of the table is

5° + the angle of Table XXII

;

(585)

so that the terms of (583) may be directly obtained from these

tables ; and this method of computing the corrections, which

depend upon the moon's parallax, agrees with the second

method of the Navigator. [B. p. 239.]

The remaining corrections may be computed from the for-

mulas (567 and 568), and the corrections of table XX may
be neglected, provided the value of E is corrected for the

parallax. These combined corrections may be inserted in a

table like table XLVIII, which serves for the star, and, by

means of the part P, for the sun ; or like tables XLIX and

L, which serve for the planets. In calculating those tables,

the moon's horizontal parallax is taken at its mean value of

57' 30" ; and the planet's or sun's parallax in altitude is ob-

tained from the formula

<*' a s± — P cos. a,

in which P is the horizontal parallax. The value of P, used

in the construction of the part P of table XLVIII, is 8".6

;

that used for table XLIX is 35" ; and since these corrections

are proportional to the parallax, they are easily reduced to any

other parallax. This reduction is actually made in table L.

VII. The value of d"E (578), might be found by the for-

mula

8„E __ 2 sin, a— sin,(6+ jE:)— sin. (6—E)
'

2 sin. E ?

which is easily calculated by means of the table of natural

sines and cosines.
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VIII. The true distance may be obtained from observation

by either of the preceding methods, and the time of the ob-

servation must be compared with the time when the distance

is the same to an observer at Greenwich. Now this latter time

can be obtained from the Nautical Almanac by precisely the

same process of interpolation, which has been applied to the

changes of right ascension. The distances are given in the

Nautical Almanac for every three hours, and the proportional

logarithm of the difference of these distances. If, then, the

distance increases uniformly at the rate of increase, F for

every three hours ; the interval T, at which it has increased

by the quantity F 1

, is found by the proportion

F: F' — S h
: T (587)

Prop.log. T— Prop. log. jF'— Prop, log.F+ Prop. log. 3\ (5S8)

But Prop. log. 3* = ; (589)

and if we put

Prop. log. F~Q, (590)

(588) becomes

Prop. log. T ±= Prop. log. F< — Q. (591)

If the distance increased uniformly, the value of Q would

be invariable ; but Q is variable, and must be regarded as

belonging to the middle instant of the interval to which it be-

longs ; and it increases while the distance decreases, and the

reverse. Let then

<5 Q z= the decrease of Q in three hours,

<* T = the correction of T, arising from the change of Q,

and the value of Q for the interval T is

Q+ 180^- ^ « = ^ + *'«>
<
592

>
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so that by (591) and (340)

Prop. log. (T+aT) = Prop. log. T— * Q (593)

log.(T+3T) = \og. T+6'Q (594)

. . ~,v , m , /,* *Z\ „ _
log.

But if in (196) and (204) we substitute

S T
-jr^Z™, (596)

we have, by logarithms and (595),

;

log- =/f>g. (l+^) -^, (597)

so that by (592) and (208)

a T - ^ Q -= (
18Qfft- r

)
^Q

/iboov
*~

log. 6 2X 180-.X 0.434 V ;

(180OT— T) TSQ
:

156 OT (599)

and the table [B. p. 245.] for correcting by second differences

may be calculated by this formula ; and, in order to obtain the

value of 9 T expressed in seconds, the factor T should be

expressed in seconds, while (180 771 — T) is expressed in

minutes ; and it must not be forgotten, that the proportional

logarithms are decimals.

IX. When the distance is observed for a star, whose dis-

tance is not given in the Nautical Almanac, the Greenwich

time of the observation can be found approximately by adding

the assumed longitude, if west to the observed time, or subtract-

ing it if east ; or the time can be taken from the chronometer

if it is regulated to Greenwich time.
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Find, in the Nautical Almanac, the right ascension and

declination of the star and the declination of the moon, for

this time. Then, if T and S (fig. 43.) are supposed to be the

moon and star, and P the pole of the equator, D and D' their

declinations, disregarding their names, so that their polar dis-

tances are 90° ± D and 90° ± D 1

, and if R' is their differ-

ence of right ascensions, we have, when their declinations are

of the same name, by putting

8= i(D + D' + E) (600)

cos^^ =cos.^P^v(-^?" (^V (601)2 * ^ \ cos. D cos. D 1

J
v

'

But if the declinations are of the same name,

^ \ cos. D cos. D' / '

v '

and the right ascension of the moon being thus found, the

Greenwich time, when it has this right ascension, is easily

found from the moon's hourly ephemeris in the Nautical Al-

manac, and this method is the same with that in [B. p. 428.]

X. The latitudes and longitudes may be used instead of the

right ascensions and declinations, and the calculation will be

as in [B. p. 427.] The variation of daily motion is, in this

case, to be had regard to, precisely as explained in (536-541).

XI. The distances of the Nautical Almanac can be calcu-

lated from the right ascensions and declinations of the sun,

moon, and stars, or their latitudes and longitudes, by resolving

the triangles TPS (fig. 43.) by either of the methods which

have been given, when two sides and the included angle are

known, as in [B. p. 434.]

28
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In calculating the distance of the sun and moon, the latitude

of the sun may be usually neglected ; so that if SR (fig. 46.)

is an arc of the ecliptic, S the sun's place, M the moon's,

and MR perpendicular to SR,

MR z=z L — the moon's latitude,

SR z= L
x
=- the difF. of long, of© and J)

,

and cos. E = cos. SM— cos. L cos. Z
x , (603)

as in [B. p. 433.]

It would, however, be rather more accurate to take

L z= the diff. of lat. of © and J) .

XII. The determination of the longitude by solar eclipses

and occultations will be reserved for another chapter.

104. Examples.

1. Calculate the correction of table XLV, when

T=zlh 50w, and B = 9m = 540s
.

Solution. l
h 50m P. L. lm 50* ar. co. 8.0080

12* — 1* 50" = 10* 10" P. L. 10* 10* ar. co. 8.7519

2 P. L. 12m 2.3522

£ B = 270' 2.4314

corr. = 34 ff

.9 1.5435

2. Calculate the correction of table XLV, when

T=3* 10", and B = IP*.

Ans. 64M,
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3. Find the right ascension of the moon's bright limb, Sept.

25, 1839, at the time of the transit over the meridian of New
York. The right ascensions of the moon for the two preceding

and the two following transits at Greenwich are

Sept. 25. Moon II. L. T. 2* m 36*.69

Moon II. U. T. 2 30 38 .08

Sept. 26. Moon II. L. T. 3 1 33 .18

Moon II. U. T. 3 33 19 .89

Ans. 2M3 W 14».4.

4. At a place in west longitude, Oct. 25, 1839, the moon's

bright limb passed the meridian 10 m 6'.83 sideral time, before

the star C. Tauri ; find the longitude of the place of observa-

tion.

The fight ascension of the star C. Tauri was 5*43 m 16'.84,

and those of the moon

Oct. 25. Moon II. L. T. 4*43*53 '.55

Moon II. U. T. 5 16 28 .40

Oct. 26. Moon II. L. T. 5 52 51 .91

Moon II. U. T. 6 26 40 .00

Ans. 70° 25' 30" W.

5. Find the moon's parallax in altitude, and the correction

and logarithm of table XIX, when the altitude is 40° 40', and

the horizontal parallax is 58'.



328 SPHERICAL ASTRONOMY. [CH. VIII.

"~
Tables XVII, XVIII, XIX, XX.

Solution. 58' P. L. 0.4918

40° 40' sec. 0.1200

Parallax in alt. =. 44' P. L. 0.6118

By Table XII. Refrac. = V 6" 9.6990

Corr. — 16' 48"* = 59' 42" — 42' 54" P. L. 0.6228

Log. of Table XIX. = 0.2018

6. Find the correction and logarithm of Table XVII, for a

star, when the altitude is 13°. 15'.

Ans. Corr. = 5G' 2", Log. — 1.3433.

7. Find the correction' and logarithm of Table XVII, for

Venus or Mars, when the parallax is 20", and the altitude

24° 30.

Ans. Corr. = 58 / 14", Log. =z 1.6647.

8. Find the correction and logarithm of Table XVIII,

when the altitude is 56°.

Ans. Corr. — 59' 26", Log. — 1.9544.

9. Find the correction and logarithm of Table XIX, when

the altitude is 70°, and the horizontal parallax 54'.

Ans. Corr. = 41' 34", Log. = 0.2299.

* The numbers of Table XIX are so disposed in the Navigator, that

the corrections of proportional parts of parallax are all additive. This

is effected by placing each number opposite that parallax, which is 10"

less than the one to which it belongs. There is, therefore, a correction

for 0" of parallax.
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10. Compute the value of the auxiliary angle m, in the first

and second methods of correcting the lunar distance, when

the moon's apparent altitude is 40° 40', its horizontal parallax

58', and the sun's apparent altitude 70°.

Solution. The values of m might be computed directly from

(545), but it is more convenient to obtain it by some process

of approximation. For this purpose let

m =- 60°
fc
+ 8 m,

and we have

2 cos. (60°+ » .) = «»(»+ ' »)co..(«- J a)

v
'

' cos. o cos. a

=*s 2 cos. 60° cos. 9 m_ 2 sin. 60° sin. § m (604)

= (cos. 8b— tang, b sin. 8 b) (cos. ^a-j-tang. a sin. 8a),

in which we may put

2 cos. 60°= 1, cos. <? 6= 1—2sin.2£tf&=l— £<5&2sin. 2 l"

cos. 8 m=zl — \8m? sin. 2 I",

and (604) becomes

2 8 m sin. 60° = 8 b tang, b— 8 a tang, a (605)

+ %( 8 b 2 —

8

m2
) sin. 1".

But if we take

e=.2 8 b sec. b and e' = 2 d a sec. a,

Prop. log. e is the logarithm of Table XIX, and Prog. log. t' is

the corresponding logarithm for the sun, star, or planet, and

by (605),

8 m = I e sin. b cosec. 60°— | e
f sin. a cosec. 60° (606)

.{_£( $b 2 —8 m2) s in . 1" cotan. 60%

28*



330 SPHERICAL ASTRONOMY. [CH. Till.

Auxiliary angle in lunar distances.

whence in the present case

c P.L. 0.2018 e' P. L. 2.0173

40° 40' cosec. 0.1860 70° cosec. 0.0270

60° sin. 9.9375 9.9375

1°25'7" 0.3253 153" 1.9818

approx. 3m=l( 1° 25'1"—V 53")=£( 1° 23' 4")=20'46"= 1246"

I b as 42' 54" as 2574"

db+ dm = 3820 3.5821

H— dm=z 1328 3.1232

1" sin. 4.6856

60° cotan. 9.7614

corr.^m as 7" as J (14") 1.1523

I m as 20' 46" + 7" as 20' 53".

11. Compute the value of the auxiliary angle m, when the

moon's apparent altitude is 25° 30', the horizontal parallax 60',

and the star's apparent altitude 10.°

Ans. 60° 13' 48".

12. Find the correction of Table XX, when the distance

is 25°, the sun's altitude 10°, and the moon's altitude 25°.
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Solution. We should find, in this case,

db = 50' 6" *a — 5' 6"

9"E = — 27' 22" y.E = — 3' 15"

9b—*"E= 1° 17' 28" =4648" <? a— *'JE= 8' 21" =501"

a6+^£ = 22 / 44// *a+3'.E = 1'51" =111"

22/ 44" s- P. L. 0.8986 0.899

1° 17' 28" = 4648" (ar. co.) 6.3327 P. L. 0.366

25° tang. 9.6687 2 sin. 9.252

1" cosec. 5.3144 l"2cosec. 0.629

V 6" = 66" 2.2144 501" (ar. co.) 7.300

i (66") = 33" 111" (ar. co.) 7.955

2)6.401

24" = 18" + 6" 3.200

57" = corr. Table XX.

13. Calculate the correction of Table XX, when the dis-

tance is 120°, the sun's altitude 20°, and the moon's altitude

10°.

Ans. 10".

14. Calculate the corrections of Tables XLVIII, XLIX,
and L, when the apparent distance is 28°, the moon's apparent

altitude 38°, the planet's apparent altitude 18°, and its hori-

zontal parallax 16"
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Tables XLVIII, XLIX, L.

Solution.

57' 30" P. L. 0.4956 0.4956

18° cosec. 0.5100 38° cosec. 0.2107

28° sin. 9.6716 tang. 9.7257

5°— lst.cor.=4°22'9" 0.6772 5 +2dcor.z=6°6'34" 0.4320

6° 6' 34" moon's par. in alt. = 43'

28° moon's approx. alt. == 38° 43'

28° 29' == approx. dist.

18° 43'+29'=72':=4320"ar.co. 6.3645

38° 43' 43—29=:14' P.L. 1.1091

28° 22'= i sum tang. 9.73235 28° tang. 9.7257

10°22'= Jdiff. cotan. 0.73771 1" cosec. 5.3144

£(28°) = 14° tang. 9.39677 2)34" 2.5137

A=z36°2V 9.86683 17"

lstang.=:22 21' tang. 9.6140 9 614

18° cotan. 0.4882 0.488

By Table XII 2' 54" P. L. 1 .7929 T. X, A. 33", P. L. 2.515

2' 17" 1.8951 25"= cor. T. XIX 2.617

2d ang. = 50° 21' tang. 0.0816 ^fX25"=ll"=cor.T.L

38° cotan. 0.1072

By Table XII 1' 13" P. L. 2.1701

47" 2.3589

Cor. Table XLVIII = 2" 17" — 47' + 17" = V 47".
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15. Calculate the corrections of Tables XLVIII, XLIX,
and L, when the apparent distance is 60°, the moon's appa-

rent altitude 59°, the planet's apparent altitude 30°, and its

horizontal parallax 30."

Ans. Cor. Table XLVIII = V 24"

XLIX = — 21"

L = — 18".

16. Find the correction of the table [B. p. 245.] for the

interval of 2 h 30 m
, and the difference of the Proportional Log-

arithms equal to 83.

Ans. 15 s
.

17. If the observed distance were 45° 34' 10", the moon's

apparent altitude 22° 19', its horizontal parallax 60' 19", the

planet's apparent altitude 42° 12', its horizontal parallax 15".3

;

what is the true distance.

Solution. I. In this case m =z 60° 12' 28"

«— 42° 12' a a = 51" a=42 11 9

6 = 22 19 6b=z 53' 31" &'— 23 12 31

«'+&'= 65 23 40"—N.cos.=— 0.41637 E=z 45 34 10

E-{-m=\05 46 38 N.cos.=— 0.27189

a-f-6+m= 124 43 28 N. cos.=— 0.56964

— 1.25790

E—m=—14° 38'18" N. cos. = 0.96754

a+ b—m=z 4 18 32 N. cos. = 0.99718

E' = 45 121 N. cos. = 0.70682
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II. a— b + m=: 80° 5' 28" — N. cos. =— 0.17208

a— b— m=—40 19 28 — N. cos. =— 0.76239

E + m — 105 46 38 N. cos. as— 0.27189

— 1.20636

a! — b< = 18° 68' 38" N. cos. = 0.94567

E — m—— 14 38 18 N. cos. — 0.96754

£' „*= 45 1 14 N. cos. — 0.70685

III. s = J (a + b + IB) = 55° 2' 35" sec. 0.2420

JE = 45°34 10" sin. 9.8538 9.8538

s— a = 12 50 35 cosec. 0.6532 0.6532

s—E— 9 28 25 sec. 0.0060 611". T. XIX. 0.1920

598". Table XVII 1.8907 20 37 P. L. 0.9410

43" P. L. 2.4037 31 Table XX.

59°.51 27' 19"

E '= 45° 34' 10"+ 59/ 51" + 27' 19"— 2° = 45° 1 20".
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IV. Z =z 47° 48' z = 67° 41'

5
1
=80°31 / 35// cosec. 0.0060

E=z45 34 10 sin. 9.8538

9.6990

9.5588 9.5588

Z=47°48/ sin. 9.8697 s=67°41' sin. 9.9662

^—2=12° 50' 35" cosec. 0.6532

s
x
— Zz=32°43'35" cosec. 0.2671

i a = 51" P. L. 2.3259 a 6 =53' 21" P. L. 0.5281

1st cor. == 42" P. L. 2.4076 2d cor. 1° 26' 7" 0.3202

<>&= 53'2i" a a = • 51"

£'=54' 3"+45°34'10"+31".-18"-1 26'58"=45 1'28"

V. J (a + 6) = 32° 15' 30" tang. 9.80014

J(a_&) — 9 56 30 cotan. 0.75626

IB = 22 47 5 tang. 9.62330

^1 =123 28 15 tang. 0.17970

lstang. == 100° 51' 10" tang. 0.7175

2d ang. = 146° 15' 20" tang. 9.8250

a — 42°12/ cotan. 0.0425 6z=22° 19; cotan. 0.3867

d a = 51" P. L. 2.3259 db=. 5321" P.L. 0.5281

1st cor. = — 7" P.L. 3.1859

2d cor. =— 32' 46" P. L. 0.7398

E' ss 45° 34' 10"— 7"— 32' 46"+ 31 "— 18"= 45° V 20".
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VI. 60' 19" P. L. 0.4748 0.4748

a == 42° 12' cosec. 0.1728 b ~ 22° 19' cosec. 0.4205

E == 45° 34' 10" sin. 9.8538 tang. 0.0086

1st cor. — 4° 316" 0.5014 2d cor. zz:5° 2228" 0.9039

Cor. Table XLVIII = 1' 33"

JE =45° 34' 10"4-4° 3' 16"+5° 22'28"+!' 33"—10°—45°V 27".

VII.

a— 42°12/ N.sin. 0.67172

b+E = 67° 53' 1 0", AN. sin.— 0.46322 60' 19" P. L. 0.4748

b—E ——23° 15' 10", £N. sin. 0.19739

0.40589 ar. co. 0.3916

£ = 45° 34 10" sin. 9.8538

Cor. Table XLVIII = V 33" cor.zz:— 34' 17" 0.7302

E = 45° 34' 10" + T 33"— 34' 17" = 45° 1' 26".

18. The apparent distance of the sun and moon is 95° 50'

33" ; the moon's apparent altitude is 35° 45' 4", its horizontal

parallax is 54 / 24 //

; the sun's apparent altitude is 70° 48' 1"
;

what is the true distance ?

Ans. 95° 44' 29".

19. The apparent distance of a star from the moon is 31° 13'

26" ; the moon's apparent altitude is 8° 26' 13", its horizontal

parallax is 60', the star's apparent altitude is 35° 40'
; what is

the true distance ?

Ans. 30° 23' ^Q".



§ 104.] LONGITUDE. 337

Lunar distances.

20. Find the Greenwich time, Oct. 3, 1839, when the

moon's distance from the sun was 38° 12' 9".

Solution.

Distance 1839, Oct. 3, 15* 38° 59' 2 1" P. L. 0.3180

38 12 9

18* P. L. 3189 47' 12" P. L. 0.5813

3180 T= 1*38™ 10* P.L. 2633

9 cor.T.zn —2*

Greenwich time = 16* 38™ 8*.

21. Find the Greenwich time, Jan. 2, 1839, when the moon's

distance from Aldebaran was 70° 45' 13".

1839. Jan. 2, 9* Greenw. Time, Dist. — 69° 26' 29"

P. L. = 0.2852

12* P. L. — 0.2863

Ans. 12* 31™ 47*

22. The correct distance of the moon from /*Corvi, 1839,

April 3d, 11* 20™, in longitude 70° W by account, was 54°

8' 15" ; what was the longitude ?

29
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Solution. 54° 8' 15" Gr.T.= 11* 20™+ 4* 40™ =: 16*

3>'s Dec. s± 26 48 52 by N. A. sec. 0.04941

*'s Dec. = 22 30 11 sec. 0.03439

\ sum = 51° 27' 18" cos. 9.79198

Dist.— J sum = 2 24 36 cos. 9.99962

2)19.87540

3* 59 m 42* cos. 9.93770

's Dec. = 12 25 56

3>'s Dec. = 16* 25 m 38* r= Greenw. Time == 16*

Long. = 16*— 14* 20™ = 4*40 m = 70°, as supposed.

23. The correct distance of the moon from Castor, 1839,

Nov. 29 d 19*, in longitude 45° W. by account, was 78° 3';

what was the longitude 1

Greenwich, 1839,

Nov. 29* 21*, D 's R. A. = 12* 15" 16*.5, Dec. = 3° 48' 31" S.

22*, 3)'s R. A. = 12 17 2 .9, Dec. — 4, 2 39 S.

Castor's R.A. = 7 24 24 .4, Dec. =32 14 2N.

Ans. 44° 18' W.

24. Find the distance of the moon from the sun, 1839,

August 12 d
, Greenwich time at mean noon.

©'s R. A. = 9*25™51*.72, Dec. = 15° 7'51".5 N.

D »s R. A. = 11 42 23 .48, Dec. = 57 27 .9 N.

Ans. 36° 33' 14".
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25. Find the distance of the moon from the sun, 1839,

August 14d, Greenwich time at mean noon.

©'s R. A. = 9h 33™ 24*.57, Dec. = 14° 31' 28".2 N.

3>'s R. A. = 13 8 27 .62, Dec. = 10 25 54 .5 S.

Arts. 58° 50' 38"
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Annual and diurnal aberration.

CHAPTER IX.

ABERRATION.

105. The apparent position of the stars is affected

by two sources of optical deception, so that they are

not in the direction in which they appear to be.

The first of these sources is the motion of the earth,

and the corresponding correction is called aberration.

Aberration, like the earth's motion, is either annual

or diurnal.

106. Problem. To find the aberration of a star.

Solution. The apparent direction of a star is obviously that

of the telescope, through which the star is seen. Let S
(fig. 47.) be the star, and O the place of the observer at the

instant of observation : SO is the true direction of the star,

or the path of the particle of light which proceeded from the

star to the observer, and it would be the direction of the tele-

scope if he were stationary. But if he is moving in the

direction OP, the direction of the telescope OT must be

such, that the end T was at the point R, in the line OS, at

the same instant in which the particle of light was at this

point. The length RT is, therefore, the distance gone by the

observer while the light is describing the line OR.

If, then, we put
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Aberration in latitude and longitude.

V=z the velocity of light,

v = the earth's velocity,

/= TOP = RT0
9

3I=z— ROT=z the aberration from the true place,

m = apghf
(607)

we have,

V:v=z OR: TR = sin. I : — dlsin. 1"

dl=z — 7w sin. J. (608)

107. Problem. To find the annual aberration in

latitude and longitude.

Solution. The earth is moving in the plane of the ecliptic

at nearly right angles to the direction of the sun. Hence if

TP (fig. 48.) is the ecliptic, T the point towards which the

earth is moving, S the true star, S 1 the apparent star,

© ss= the sun's longitude,

A — the star's longitude, 8 A — the aberration in long.

L ss the star's latitude, dL = the aberration in lat.

we have

ST =1, SP = L,

long, of T = © — 90°, PT = © — 90° — A = j
$

PP> = dA= TP— TP', * L = SP' — SP

cos. !T= cotan. /tang.^ = cotan. (J+ * -O tanS* (
A

i
— * -^)j

whence
tan-«-^> i ta"g-(J+/J )

> (609)
tang. J t tang, i %

'

29*
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and, by (287 and 288),

sin. S A sin. 1

1

nn.(2j1
-w #utf) sin.(2/+<J2)'

(610)

or omitting tJ and <> / in the denominators, and reducing by

means of (608),

sm. 2 / sin. I cos. I

sin. j , cos. ^j
(611)

COS. J

But cos /= cos. ^j cos. Z, (^12)

whence <M = w sin. ^, sec. L (613)

= — ?w cos. (O — ^) sec. L.

We also have

. sin L sin. (Z+ J^) /«i>i\
SHI. T == -. =r = .

, r =r# (
614

)
bin./ sin (/-)-<$/)

v
'

whence

sin. Z sin. (/+ <5 /) tea sin. I sin. (Z+ a Z), (615)

sin. Z cos. I
»nd ^Iz: i

—

:

-- * I
cos. x. sin. jc

= — m tang, Z cos. I

z± — jw cos. -^
t

sin. Z

= — m s in . (o — j) sin. Z. (616)

108. ProTdcm. To find the annual aberration in dis-

tance and direction from the vernal equinox.
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Aberration from vernal equinox.

Solution. Let A (fig. 48.) be the vernal equinox, and let

M= SA, $Mz= aberration of M,

N=z SAT, 3N=z aberration of N.

Now we have

*M= $ I cos. AST z=z —.—--=—.— <JJ
sin.M sin. I

sin. — cos.M cos. I /„„^v= — m i

—„ . (617)
sin. M v

'

But

cos. I=z sin. © cos. M— cos. Q sin. M cos. N, (618)

whence if we put

B = —m sin. © (619)

C=z— m cos. O, (620)

we have

<5 M=z B sin.M+C cos. M cos. N.

Again ; the triangles ASS 1 and A TS' give by (243),

sin. AST= S^O'*=_ «~Ori°-g
oj sin. J v

'

"4- -i, sin. iV C sin. iV" ,„c™
^N= m cos. © -r— :

——

.

(622)^ sin.M sin. M v
'

109. Problem. To find the annual aberration in

right ascension and declination.

Solution. If AT (fig. 48.) were the equator, we should

have

D=zSP, R=zAP,



344 SPHERICAL ASTRONOMY. [CH. IX.

Aberration in right ascension and declination.

and if we put

iVj == SAP, w = obliquity of ecliptic,

we have

and the triangles ASP, AS'P 1 give

sin. D =2 s n if sin. N
t (623)

sin. (D— d D) = sin. (M— 8 31) sin. {N
1
— a N) (624)

cos.D $D=z sin. if cos. iV
1
S i\r+ cos. if sin. iV^ <jil (625)

— J3 sin. M cos. ii sin. iVj

— C(sin. iVcos.N
1
— cos. 2M sin. N

x
cos. N),

and if we put

A z= C cos. to (626)

6' = sin. M cos. iJ^T sin N
x

sec. Z> (627)

a'=i—(sin.iVcos.iY^—cos. 2ifsin. iV^ cos.iV)sec.Dsec. w , (628)

we have

cos. M == cos. D cos. R (629)

cotan. iV\ = sin. R cotan. Z> (630)

sin. D cos.iV, . ^
sin.M cos. iV\ be - *- c= sin. JD cotan. iV\ (631 )

sin. iVj i v /

z=z sin. D sn. R cotan. Z> z= sin.R cos.D
b' = sin. Z> cos. JR cos. X> sec. D = sin. D cos. i2 (632)

a'=z—[sin.(iV—iVJ-J-sin. 2 ifsin.N
x
cos. N] sec.D sec.

«

= [sin. w— sin. 2 if sin. 2N
x
sin. w] sec. D sec. w

— sin. 2 M sin. iV^ cos. N
t

cos. w sec JP sec. w
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Aberration in right ascension and declination.

= (1—sin. 2 D) sin. w sec. D sec. w— sin. Ms'm.D cos.Nt
sec.Z)

=i cos. Z> tan. w— sin. JR sin. D (633)

<>Z> z=^La' + Bb'. (634)

Again, we have

cos. M z= cos. JR cos. D (635)

cos. (itf + S M) = cos. (R-j-dR) cos. (Z>+ <* D)

cos. I> sin. R$R — sin. Jf a ilf— cos. Rsm.DSD
z= £ (sin. 2 M—b> cos. J? sin. Z>)

-f- ^4 (sin. Mcos. Mcos. iVsec. ^— a' cos. JR sin. D), (636)

and if we put

a=z(s'm.Mcos.M cos. Nsec. w

—

a! cos.R sin. D) secD cosec. J?

6= (sin. 2 M— b' cos. R sin. X>) sec. X> cosec. R
9

we have

a cos.D sin. 12 — sin. M cos. if/cos. iV
2 + sin* -K cos - -B sin. 22>

-J-
(sin. if cos. ifcT sin. N

±
— cos. R sin. D cos. Z>) tan. w

zzz sin. jR cos. R (cos. 2 Z> -f- sin. 2 D)

-{-(sin.THsin.iV^cos.jR cos.D

—

cos.jR sin.Msin.N
x
cos.D)tan. <*>

±= sin. 12 cos. jR

a zs cos. J? sec. D •- (637)

6 cos. D sin. JR z= 1 — cos. 2 M— sin. 2 D cos. 2 R
= 1 — cos. 2 2> cos. 2 12— sin. 2 D cos.2 i2

= 1 — cos. 2 JRizzsin. 2 R
b =z sin. R sec. Z> (638)

*R=Aa + Bb, (639)

and formulas (619, 620, 632, 633, 634, 637, 638, 639) agree
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with those given in the Nautical Almanac for finding the an-

nual aberration.

110. Corollary The value of m, which is used in the Nau-

tical Almanac, is

m =n 20".3600,

which gives

m cos. co— 20".3600 cos. 23° 27' 36".98 = 18".6768.

111. Scholium. In the values of the aberration in right

ascension and declination, each term consists of two factors,

one of which is the same each instant for all the stars, and the

other is the same for each star, during several years.

i

112. Corollary. If in (634) and (639) we put

i =z A tan. « (640)

B =z7i cos. H (641)

-4= A sin. H; (642)

they become

<3Z?= I cos.D— 7i sin. Hsin. R sin. D-\-U cos.H cos. R sin.D

= i cos. D-\-h cos. (H+ R) sin.Z) (643)

tR= h sin.H cos. J? sec. D -\-h cos. //sin. J2 sec. D
= A sin. (H+ R) sec. 2>, (644)

which agree with the formulas in the Nautical Almanac.

113. We have from (619-639)

d 2?=zsec.D [—m cos. w cos. © cos.R— m sin. Q sin. R] (645)
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~~Tabie~XLII.

ss sec.D [— J m ( cos. to+ 1 )
( cos. © cos.R -{- sin. © sin.R

)

-f- J m ( I— cos. w) (cos. O cos.R— sin.© sin. R)]

:=zsec.Z>[

—

m cos. 2 J w cos.(jR—© )-\-m sin. 2 £to cos. (i2-}"0
)] >

and if we put

Q — R— o, Q' = i2+0 (646)

n = — m cos. 2 J w, rc' -= 7ft sin. 2 J a>, (647)

(645) beeomes

S R — sec. D (n cos. Q + ri cos. Q'), (648)

and the values of n cos. Q and ?*' cos. Q' may be put in tables

like Parts I and II of Table XLII of the Navigator.

Again, we have

$ D=z sin. D (m cos. w sin, R cos. © — m cos. R sin.
)

— m sin. oi cos. © cos. D
z= sin. Z> [J m (cos. w-j- l)sin. Q— \m (1— cos. w) sin. Q']

— J m sin. (o [cos. (© + D) + (cos. © — !>)]

=sin.Z>[-7wcos.2^cos.)Q+90°)+Jmsin.2Jcucos.(Q /+90 )]

—\m sin. w [cos. (0 + 2?) -f- cos. (© — D)]

== sin. 2> [—?i cos. (Q + 90°) + »' cos. (
Q'— 90°)]

-Jm sin. co [cos. (©+!>) + cos.
(
— !>)], (649)

and the values of

— Jmsin. wcos. (© + -#) and —Am sin. to cos. (@— D)

may be put in a table like Part III of Table XLII. The
rules for rinding the variations in right ascension and declina-

tion are then the same as in the explanation of this table.



348 SPHERICAL ASTRONOMY. [CH. IX.

Table XLI.~

114. In constructing Table XLII, the values of m and w

were taken

m = 20", co — 23° 27' 28", (650)

whence

n = — 19".173, n> == 0".827, (651)

— J m sin. co — — 3".9814. -

(652)

115. By putting

© - J = P, (653)

we have, by (613 and 615),-

SL — — m cos. (P — 90°) sin. L (654)

d J =i — m cos. P sec. Z», (655)

so that if the values of

— m cos. P
are inserted in tables like Table XLI of the Navigator, the

variations of latitude and longitude are found by the rule given

in the explanation of this table.

116. If the star is nearly in the ecliptic, the aberration in

latitude may be neglected, and the aberration in longitude

will be by (655)

d
J z=z — m cos. P. (656)

117. Problem. To find the diurnal aberration in

right ascension and declination.

Solution. Let

v' == the velocity of a point of the equator, arising

from the earth's rotation,

»' = ir^-iir- (
657

)V sin. 1"
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Aberration from the motion of the star.

The velocity of the observer is evidently in proportion to the

circumference which he describes in a day, that is, to the

radius of this circumference, or to the cosine of the latitude.

The velocity of the observer z=z v' cos. lat.

Now, the diurnal motion is parallel to the equator, whence

the formulas (613) and (616) may be referred at once to the

present case by putting

Z s= the right ascension of the zenith,

and changing m into m! cos. lat., © — A into Z— R, and L
into D ; whence the diurnal aberrations in right ascension

and declination are

JR=— m' cos. (Z—R) sec. D cos. lat. (658)

ti D — — m! sin. (Z— R) sin. D cos. lat. (659)

118. The value of m 1

is nearly

*»>==<k3L (660)

119. Problem. To find the aberration which arises

from the motion of a planet.

Solution. The most important planets revolve about the sun

almost uniformly in circles, and in the plane of the ecliptic.

At the instant, then, of the light's reaching the earth, the

planet has advanced in its orbit by a distance proportioned

to its velocity, and to the time which the light takes in reaching

the earth. Let then S (fig. 49.) be the sun, and O
x
O[ per-

pendicular to O
X
S the path of the planet; and put

v
x
= the velocity of the planet,

r = OS, r, = 0,-S,

30
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we have

il^-0 1
00

1

' =_%^^i=-Wlcos.P l
.(661)

But it will be shown in Theoretical Astronomy that

v 2
: v 2 — r

x
: r;

hence m2
: m\ zz v 2

: v 2 zz r
x

: r

m : m
1
— \Zr

±
: \/r

mj z: m \/

—

(662)

\Jzzz-mV— cos. Pj
; (663)

and this aberration being combined with (656) gives the

whole aberration in longitude, from which a table, like Table

XXXIX of the Navigator, may be constructed.

120. Examples.

1. Find the values of log. A, log. B, h, II, and i for May 1,

1839, when © zz 40° 23' 52".

Arts. log. A zz 1.1498 B

log. B — 1.1248 R

h= 19".42

H = 226° 40'

izz — 6". 13

2. Find the values of log. a, log. 6, log. a', log. 6' for Al-

tair in the year 1839.
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Solution.

R = 19" 42™ 55* cos. 9.63760 sin. 9.95466 „

D =z 8° 26' 52" sec. 0.00474 sec. 0.00474

log. a = 9.64234 log. b =. 9.95940 n

R cos. 9.63760 sin. 9.95166„

D sin. 9.16704 sin. 9.16704 cos. 9.99526

log. b' = 8.80464, 0.13234 9.12170„ w tan. 9.63747

0.42927 9.63273

a' = 0.56161 log. a' = 9.74947

3. Find the values of log. a, log. 6, log. a 7

, log. b' for Regu-

lus in the year 1839 ; for this star

R — 9h 59m 48s
, D — 12° 45' 7".

^Lns. log. a = 9.94816n

log. b = 9.71048

log. a' — 9.49516

log. & / =9.28122n

4. Find the numbers of the different parts of Table XLII

for the argument 7* 20° — 230°.

Ans. 12 //.32 for Part I,

— 0".53 for Part II,

2".56 for Part III.
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Annual aberration.

5. Find the number of Table XLI for V 20°.

Ans. 12.9.

6. Find the aberration in right ascension and declination of

Altair for May 1, 1839.

Solution. I.

A 1.1498, 1.1498,

a 9.6423

— 7".93

a1 9.7494

— 6".20 0.7921 n 0.8992,

B 1.1248, 1.1248,

b 9.9594,

3D=

— 0".85

V 8.8046

12". 14 1.0842 9.9294,

33=5".9;=(h39 :—.$".1%

II.

H+ a= 162° 44'+ 360° sin. 9.4725 cos. 9.9800,

A=19".42 1.2882 1.2882

2>=8°27' sec. 0.0047 sin. 9.1670

aR = 5".83a S.39 0.7654, — 2".72 0.4352,

i cos. D =z — 6 '.06

t D = — 8",78
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Annual aberration.

III.

R—© = 255° 40' = 8s 15° 40' P. I = 4".75

R+© = 76°+ 360 = 2s 16° + 12* P. II = 0".20

4'.95 0.6946

D sec. 0.0047

$R — 5" = s
.33 0.6993

8* 15° 40'+ 3*z=z 11 s 15° 40' P. I. — 18".57

16°+3s =z5*16° P. II.—

D

— 2".85

— 2".66

— 3 .38

0".80

I* 1 .37

sin.

1.2871,,

9.1670

@ + Z>= 48° = l
s 18°

© — D=32°=l' 2°

0.4541 n

$D == — 8".89

7. Find the aberration in right ascension and declination of

Regulusfor May 1, 1839.

Ans. By Naut. Aim. *R =z 0*.38

dD=z—1".87

By the Navigator SR — 0*.38

*!>==—1".91

8. Find the aberration of Regulus in latitude and longitude

for May 1, 1839.

Ans. * 4 == 6".5

dL=0".15
30*



354 SPHERICAL ASTRONOMY. [CH. IX.

Aberration of the planets.

9. Find the aberration of Venus in longitude, when the dif-

ference of longitude of Venus and the sun is 45°.

Solution. r 0.0000 0.0000

r
t

ar. co. 0.1407 J (ar. co.) 0.0703

P = 45° sin. 9.8495 20" log. 1.3010

P
t
= sin. 9.9902 cos. 9.3214

0.6927

— 5" when P
x
is acute, + &" when P

x
is obtuse,

—14" from Table XLI —14"

lAzn —19" when P
x

is ac, =— 9" when P
x

is obtuse.

10. Find the aberration of each of the planets in longitude,

when the difference of longitude of the sun and planet is 15°.

The value of log. r
±

for each of the planets is

For Mercury 9.5878 is the mean value,

Venus 9.8593

The Earth 0.0000

Mars 0.1829

Jupiter 0.7161

Saturn 0.9795

Uranus 1.2829

Ans. For Mercury — 43" when P
x

is acute,

4" when P
x

is obtuse,

Venus — 41" when P\ is acute,

3" when P
x

is obtuse,

Mars 35"

Jupiter 28"

Saturn 26"

Uranus 24"
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Diurnal aberration.

11. Find the diurnal aberration of right ascension and

declination of Polaris for Jan. 1, 1839, and latitude 45°, when

the hour angle is
h 30w.

Solution. 0".31 9.4914 9.4914

45° cos. 9.8495 9.8495

D = 88° 27' sec. 1.5678 sin. 9.9998

0*30"* cos. 9.9963 sin. 9.1157

*'R = — 8".04 =— 0*.53 0.9050 9 D ±2 0".03 8.4564

12. Find the diurnal aberration of ^Ursse Minoris in right

ascension and declination for Jan. 1, 1839, and latitude 0°,

when the star is upon the meridian.

Dec. of 9 Ursse Minoris = 86° 35'.

Ans. 3R = — 0\35

3'D=z 0,
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Refraction of a star.

CHAPTER X.

REFRACTION.

121. Light proceeds in exactly straight lines
;
only in

the void spaces of the heavens ; but when it enters the

atmosphere of a planet, it is sensibly bent from its

original direction'according to known optical laws, and

its path becomes curved. This change of direction is

called refraction ; and the corresponding change in the

position of each star is the refraction of that star*

122. Problem. To find the refraction of a star.

Solution. Let O (fig. 50.) be the earth's centre, A the posi-

tion of the observer, AEF the section of the surface formed

by a vertical plane passing through the star. It is then a law

of optics, that

Astronomical Refraction takes place in vertical planes,

so as to increase the altitude of each star without affect-

ing its azimuth.

Let, now, ZBH be the section of the upper surface of the

upper atmosphere formed by the vertical plane, SB the direc-

tion of the ray of light which comes to the eye of the observer.

This ray begins to be bent at B, and describes the curve BA,
which is such, that the direction AC'is that at which it enters

the eye. Let, now,
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Ratio of sines in the law of refraction.

tp
— ZAC z= the ^fc's apparent zenith distance,

r =i the refraction,

== the difF. of directions of AC and BS,

= SBL — S'CL

n = COZ,

and we have

LCS' = (p
— u i

SBL = (p — u -f- r.

Again, it is a law of optics that the ratio of the sines

of the two angles LBS and ZAS' is constant for all

heights, and dependent upon the refractive power of the

air at the observer*

Denote this ratio by w, and we have

sin. ((p — u -f- r)

sin. (p

and if

= n, (664)

U and R =z the values of u and r at the horizon,

we have

sinJ^-u + rl= = cQs>
sin. y

\ / \ /

whence

sin.g)— sin. (9— u-\-r) 1 — cos. (U— R)
sin.y -f-sin. (<?— w-f- r) 1 + cos. (E/"— i?)

tang. J(m— r)

(666)

tang. [9—J(«—r)]

= tang.2J(?7_«) = iV, (667)



358 SPHERICAL ASTRONOMY. [CH. X.

Approximate refraction.

and since \ (u— r) is small,

I (ti— r) = N tang. [<p— \ (u— r)]. (668)

Again, to find w, the triangle COA gives

sin. (y— u) OA
sin. y OC (669)

Now the point C is at different heights for different zenith

distances of the star ; but this difference in the values of OC
is small, and may be neglected in this approximation ; so

that

sin. (y— u) OA n
i = cos. U= —=, (670)
sin. <p OK

sin. (p
— sin.(<j>

—

u) 1 — cos. U
sin. (p -{- sin. (y— u) 1 -\- cos. U (671)

tan. Jw = tang. 2 £17 tan.
( y— J w). (672)

and since u is small,

£ u = tang. 2 \ U tang, (<p
— £ a) (673)

which, compared with this rough value of J (u— r) from

(668),

£ (u— r) = N tan. {$— £ u) (674)

gives

* « = i=N^Yu = N
' r

'
'

<
675

>

and if we put

2iV
(676)"~ N'— l

p = J(^'-l), (677)
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Table XII.

we have, by (668),

J (u — r) = p r (678)

r =. m tan. (9 — p r), (679)

and the values of m and p must be determined by observation

;

their mean values, as found by Bradley, and adopted in the

Navigator, are

m — 57".035, p = 3, (680)

by which Table XII is calculated.

123. The variation in the values of m and p for different

altitudes of the star can only be determined from a knowledge

of the curve which the ray of light describes. But this curve

depends upon the law of the refractive power of the air at

different heights ; and this law is not known, so that the

variations of m and p must be determined by observation.

At altitudes greater than 12 degrees, the mean values of m
and p are found to be nearly constant, and observations at

lower altitudes are rarely to be used.

124. The mean values of m and p, which are given in

(680), correspond to

the height of the barometer nd 29.6 inches, (681)

the thermometer z=z 50° Farenheit. (682)

Now the refraction is proportional to the density of the air

;

but, at the same temperature, the density of the air is propor-

tional to its elastic power, that is, to the height of the barom-

emeter. If then
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Table XXXVI.

h = the height of the barometer in inches,

r — the refraction of Table XLI,

$ r = the correction for the barometer

;

we have

r : r + dr = 29.6 : h (683)

29.6 9 r = (h— 29.6) r (684)

(A—29.6) .-
* r = 29.6

r> (685)

whence the corresponding correction of Table XXXVI is

calculated,

Again, the density of the air, for the same elastic force, in-

creases by one four hundredth part for every depression of 1°

of Fahrenheit; hence the refraction increases at the same

rate, so that if

<5
; r = the correction for the thermometer,

f -s the temperature in degrees of Fahrenheit,

we have

whence the corresponding correction of Table XXXVI is cal-

culated.

125. Examples.

1. Find the refraction, when the altitude of the star is 14°,

and the corrections for this altitude, when the barometer is

31.32 inches, and the thermometer 72° Fahrenheit.
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Corrections for barometer and thermometer.

Solution. 15 '.035 log. 1 75614

76° tan. 0.60323

1 st app. r =z 228".7 =2 3' 48".7 2.35937

15".035 1.75614

76°— 3 r= 75° 48' 34" tan. 0.5971

1

2d app. r— 226" == 3' 46" 2.35325 2.353

31.32— 29.6 *= 1.72 0.235 50—72=—22 1.342„

29.6 ar.co. 8.529 400 ar. co. 7.398

6r zzzlS" 1.117 a'r= — 12" 1.093*

2. Find the refraction, when the altitude of the star is 50°,

and the corrections for this altitude, when the barometer is

31.66 inches, and the thermometer 36°.

Ans. The refraction =z 48"

Correction for barometer r= 3"

Correction for thermom. =* 2"

3. Find the refraction, when the altitude of the star is 10°,

and the corrections for this altitude, when the barometer is

27.80 inches, and the thermometer 32°.

Ans. The refraction — 5' 15"

Correction for barometer =— 19"

Correction for thermom. = 15"

126. Problem. To find the radius of curvature of

the path of the ray of light in the earth's atmosphere.

31
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Path of the ray of light.

Solution. By the radius of curvature is meant the radius of

the circular arc, which most nearly coincides with the curve.

Now this radius may be found with sufficient accuracy, by re-

garding the whole curve AB as the arc of a circle ; and if we

put

r
t
= the radius of curvature,

R
x
z= OA = the earth's radius,

we have

AC : R
x
= sin. u : sin. (^ + u), (687)

or, nearly,

AB : R
1
z= u sin. 1" : sin. y

AB= R
*
uaia - 1 "

. (688)
sin. y

Again, the radii of the arc AB, which are drawn to the

points A and B, are perpendicular to the tangents AS' and

BS, so that the angle which they make with each other is

S'AS = r
5

that is, r is the angle at the centre, which is measured by the

arc AB, consequently

AB = r
x

sin. r z= 1\ r sin. l
/y

, (689)

whence

(690)

(691)

(692)

(693)

r
r sin. q>

But, by (678),

u = 7r,

whence r
i

_ 7JR,

sin. (p

so that at the horizon

as in (225, 226).

r
i
= 7 R

x
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Dip of the horizon.

127. Problem. To find the dip of the horizon.

Solution. The dip of the horizon is the error of supposing

the apparent horizon to be only 90° from the zenith, whereas

it is more than 90°. If O (fig. 51.) is the centre of the earth,

B the position of the observer at the height AB above the

surface, O' the centre of curvature of the visual ray BT,
which just touches the earth's surface at T, BH 1 perpendic-

ular to O'Bj is the direction of the apparent horizon and

a H — HBH 1 = OBO> — the dip.

The triangle BOO' gives

BO 1
: OO 1 = sin. BOO' : sin. § H=z sin. BOH' : sin * H,

or, siRce BO' — 1 BO nearly, and OO' =z6BO,

and dH and BOH' are small,

7:6= BOH f dH
AH'3H=% BOH' = f -

, , (694)7 7 AO sin. I"
v

'

But, by (227), we have, if we put

R = AO, h=z AB
f AH' = f- V(J R h

)

= 2 V(f R h (695)

whence

and

log. a //= log. 2— log. (a/%R) — log. sin, 1"+ £ log. A

= 1.77128 + J log. 7i, (697)

which is the same with the formula, given in the preface to

the Navigator, for calculating Table XIII.
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Dip of the sea.

128. Problem. To find the dip of the sea at different

distances from the observer.

Solution. Let O (fig. 52.) be the centre of the earth, B the

observer at the height

h — AB (in feet)

above the sea, and A 1 the point of the sea which is observed

at the distance

d — AA 1 (in sea miles) = AOA 1

from B ; and let

M == the length of a sea mile in feet.

If the radius OA is produced to B'
9
so that

A B 1 == AB,

the point B 1 will be elevated by refraction nearly as much as

the point A 1
. But the visual ray BB' will, from the equal

heights ofB and!?', be perpendicular to the radius OC, which

is half way between B and B', so that the dip of B' is, by (694),

6B == | BOG =2-AOA'z=fd. (698)

The dip of the point A! will be greater than B' by the angle

i — B'BA,

which it subtends at B, and which is found with sufficient ac-

curacy by the formula

A I Til 7»

= TO =<"*•*' (699)AB — Md

M sin. T d

But, by (228),

(700)

^=w <™>
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Twilight.

1 = J0800_Msin. T n R sin. 1'
?

v
1

so that the dip of A 1
is

9 A — f d + 0.56514 £ (703)

-

which is the same with the formula, given in the preface to

the Navigator, for calculating Table XVI.

129. Refraction, by elevating the stars in the horizon,

will affect the times of their rising and setting ; and

the star will not set until its zenith distance is

90° + horizontal refraction,

and the corresponding hour angle is easily found by

solving the triangle PZB (fig. 35.)

130. Another astronomical phenomenon, connected

with the atmosphere, and dependent upon the combi-

nation of reflection and refraction is the twilight^ or

the light, before and after sunset, which arises from the

illuminated atmosphere in the horizon. This light be-

gins and ends when the sun is about 18° below the

horizon ; so that the time of its beginning or ending is

easily calculated, from the triangle PZB (fig. 35.)

131. Examples.

1. Find the dip of the horizon, when the height of the eye

is 20 feet.

Ans. 264" = 4' 24".

31*
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Dip.

2. Find the dip of the sea at the distance of 3 miles, when

the height of the eye is 30 feet.

Solution. fK8 = f=s 1 7.3

0.56514 X \° = 5'.6

dip == 7'.

3. Find the dip of the sea at the distance of 2J miles, when

the height of the eye is 40 feet.

Ans. 10'.

4. Find the dip of the sea at the distance of J of a mile,

when the height of the eye is 30 feet.

Ans. 68'.
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Parallax in altitude.

CHAPTER XL

PARALLAX.

132. The fixed stars are at such immense distances

from the earth, that their apparent positions are the

same for all observers. But this is not the case with the

sun, moon, and planets ; so that, in order to compare

together observations taken in different places, they

must be reduced to some one point of observation.

The point of observation which has been adopted for

this purpose is the earth's centre ; and the difference

between the apparent positions of a heavenly body, as

seen from the surface or the centre of the earth, is

called its parallax.

133. Problem. To find the parallax of a star.

Solution. Let O (fig. 53.) be the earth's centre, A the

observer, £the star, and OSA, being the difference of direc-

tions of the visual rays drawn to the observer and the earth's

centre, is the parallax. Now since SAZ is the apparent ze-

nith distance of the star, and SOZ is its distance from the

same zenith to an observer at O, the parallax

OSA=p

is the excess of the apparent zenith distance above the true

zenith distance. If, then,



368 SPHERICAL ASTRONOMY. [CH. XI.

Parallax in altitude.

% =z SAZ, R = OA z=z the earth's radius,

r = OS r= the distance of the star from the earth's centre,

we have P : R =n sin. Z : sin. p,

R sin. z
or sin. p =. ,

r
(704)

or
R sin. z

p zz: .

r sin. 1" (705)

134. Corollary, If P is the horizontal parallax, we have

sin. P — —

,

r
(706)

or p- R -
r sin. \"

;

(707)

whence sin. p = sin. P. sin. z
9 (708)

or p = P. sin. z. (709)

which agrees with (564) and Tables X. A., XIV, and XXIX,
are computed by this formula, combined, in the last table, with

the refraction of Table XII.

135. Corollary. In common cases, the value of the

horizontal parallax can be taken from the Nautical

Almanac ; but, in eclipses and occultations, regard must

be had to the length of the earth's radius, which is

different for different places. The curvature of the

earth is such that the radius diminishes as we recede

from the equator proportionally to the square of the sine

of the latitude ; the whole diminution at the pole being

about ^tj<j
th part of this radius.
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Reduction of parallax.

Now the horizontal parallax is, by (707), proportional to

the earth's radius, so that it diminishes at the same rate, from

the equatorial value which is given in the Nautical Almanac.

Hence, if

$R == the diminution ofR for the latitude L,

dP — that of P,

R s= the radius at the equator,

P = the parallax at the equator,

we have <3 R — -^ R sin. 2 L

= ^22(1 — cos.2Z) (710)

aP = Trfor Psin.2JE,

= 1faP(\ — cos.2Z), (712)

and if P is expressed in minutes, while $P is expressed in

seconds, (711) becomes

* P in seconds = T̂ (P in minutes) (1— cos. 2 i), (712)

which agrees wifh the formulas for calculating the reduction

of parallax given in the explanation to Table XXXVIII of

the Navigator.

136. In reducing delicate observations to the centre of the

earth, it must be observed that the centre is not exactly in the

direction of the vertical. Thus, if O (fig. 54.) is the earth's

centre, P the pole, A the observer, Z the zenith, ZAL the

vertical, Z 1 the point where the radius OA produced meets

the celestial sphere, Z' is called the true zenith, and Z the

apparent zenith. The angle ZAZ 1

, which is the difference

between the polar distance of the true and apparent zenith

is called the reduction of the latitude, and must be subtracted

from the angle ALE, or the latitude to attain the angle AOE,
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Reduction of the latitude.

or the direction of the observer from the earth's centre. The
angle AOE is called the reduced latitude, and is to be substi-

tuted for the latitude in reducing delicate observations to the

centre of the earth.

' 137. Problem. To find the redaction of the latitude.

Solution. Draw OB (fig. 54.) parallel to AE; with OA
as a radius describe the arc AR. The angle

§L = AOB=z OAL
is the reduction of the latitude, and is so small, that the arcs

AB and AR may be regarded as straight lines, and the tri-

angle ABR as a right triangle ; and since the sides AB and

AR are perpendicular, respectively, to AL and AO
f
we

have

SL = ABR.

If now, we put

m z=z the difference of the polar and equatorial radii

divided by the equatorial radius =z -g-^, (712)

we have, by neglecting the very small terms m^L 2
, <5jL 3

, m 3
,

R=:OA = R(l— m sin 2 L) (713)

OB= R [1— m sin. 2 (L+ d L)]

— R[l— m (sin. 2 L -f sin. 9L cos. L) 2
]

=z R(l— msin. 2 .L— 2msin.JLcos..Lsin.<2.L) (714)

RAB — R—OBz=z2mR sin. L cos. L*L (715)

AB = R> sin <> L = R sin. 9L (1— m sin. 2 L) (716)

, r .^ BR 2ms'm. L cos. L ._„.
tMng.»L = mn. tL=-[5 = l_ m ,m , r, <™>
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Reduction of the latitude.

whence

sin. a X— m sin. a X sin. 2 X = 2 m sin. X cos. X (718)

sin. aX z= 2 m sin. X (cos. X -f- i sm » * -£' sin. X)

= 2 m sin. X (cos. X -f-
sin. J a X sin. X)

= 2 m sin. X cos. (X,— J a X) (719)
ii

a X = *:—-- sin. X cos. (X — J a X)
sm.l" v 2

'

== „
2

t ,
sin. X cos. (X— J a X), (720)

5 sin. I
7 '

from which <?X is easily calculated.

138. Corollary. By putting in the last term of (719), for

sin. ^X, the approximate value

sin. $ L =z2m sin. X cos. X, (721)

it becomes

sin. a X — 2 m sin. X (cos. X + m sin. 2 X cos. X)

= 2 w sin. X cos. X (1 + m sin. 2 X) (722)

a X = f cosec. 1' sin. X cos. X ( 1 + $$ sin. 2 X) (723)

139. Corollary. We have, by (56),

1-J-tan.Xtan.ax _ l-\-ta.n.LtaLn.SL
cot.(X— aX) =

tan.X— tan. ^X ~ tan.X(l—cot.Xtan.ax)

T 1 + tanff. X tang, a X ,^,x= cotan. X r-S ^—
2-jt-» (

724
)

1— cotan. X tang, ax v
'
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Reduction of the latitude.

and if we put

n = 2 m (1 + m sin. 2 L) z=2m-\-2m 2 sin, 2 Z
— 2m-\-m 2 — m 2 cos. 2 Z, (725)

we have.

tang. Z = sin. 9 Z = n sin. Z cos. Z (726)

1 + tang. Z tang. 9 L =z 1 + n sin. 2 Z (727)

1— cotan. Z tang, d L = 1 — ft cos. 2 Z (728)

cotan. {L— *L)= cotan. Z (1+ nsin. 2 X.) (1— w cos. 2 Z)- 1

= cotan. Z (I + rc sin. 2 Z) (1 + ncos. 2 Z+£n 2 cos. 4 Z)

= cot.Z[l+n(sin. 2Z+cos. 2Z)+w2 cos. 2Z(sin.2 Z+cos.2Z)]

zz: cotan. Z (1 -f-w + in 2 cos. 2 Z)

z= cotan. Z (1 + ft + £ n 2 + J n 2 cos. 2 Z)

:zzcotan.Z(l+2w+ 3wi2 + m 2 cos. 2 Z), (729)

and the term m 2 cos. 2 Z is so small, that it may be neglected,

whence we have

cotan. (Z — * Z) = ( 1 + 2 m + 3 m 2
) cotan. Z

= 1.0067 cotan. Z, (730)

which agrees with the formula given in the explanation of

Table XXXVIII in the Navigator, and which must be calcu-

lated by means of Tables of 7 places of decimals.

140. Problem. To find the parallax in latitude and

longitude.

Solution. Let Z (fig. 55.) be the zenith, P the pole of the

ecliptic, and M1 the apparent place of the place of the body,

whose parallax is sought, and M its true place. Let also
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Parallax in latitude and longitude.

N z= PZ =. the zenith distance of the pole,

= the altitude of the nonagesimal,

A =a 90°— ZM' — the apparent altitude,

L == 90°—PM = the true latitude of the body,

D = ZPM = the true diff. of long, of the body

and the zenith,

P z=z the horizontal parallax,

p z= P cos. A =z MM' z=z the parallax in altitude,

3D = ZPM — ZPM =z the parallax in longitude,

3 L — PM1 — PM= the parallax in latitude,

L' =z L + dL.

The triangles PMM> and ZPM' give

_ » sin. M p sin. I? sin. (D 4-dD)
d D z= £ — = x

- -p-

2

£ '-

cos. Z, cos. A cos. JLi

— P sin. B sec. £ sin. (D + 9 D) (731)

Again, the triangles ZPM and ZPM' give

__ sin. Zi—cos. JBsin. (;!+») sin.Z/

—

cos.Bsm.A /m,ne% .

cos. Zzz —:
— —v-—L£i=

:

— - (732)
sin. B cos. (A -f-p) sin. B cos. -A

whence

sin.L cos.A—sin.Z/cos. (A-\-p) zzz cos. JB sin. (A-\-p) cos. A
—cos.B sin.A cos.(A-{-p)

= cos. B sin. p. (733)

But sin.Z* =:sin.(Z/

—

s L)zzz\s'm.L'cosJL—cos.L'sm.dL

izzsin.Z'—cos.Z/sin. <*L—2 sin.Z/sin. 2 J <?Z
nzsin.^—cos.i / sin.^jL— Jsin.Z'sin.s^Z (734)

cos.(^i -\-p) = cos.il—sin. A sin.p— £ cos. ^L sin. 2 p, (735)

32
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Parallax in latitude and longitude.

whence

cos. JL' cos. A * L z=— (cos. B—sin.A s'\n.L')p

-\-%sin.L'cos.A (psm.p— dZsin.^Zi). (736)

But

sin.4r=cos.Psin.Z/-|-sin.Pcos Z/cos. (D+ ^D) (737)

whence

cos. B— sin. A sin. L! z= cos. B — cos. B sin. 2 U
—sin..B sin.Z'cos.Z'sin. (Z>+dI>)

zrcos.JBcos. 2!,'—sin.Bsin.Z /cos.Z /cos.(I>+^Z>),(738)

and also cos. B— sin.,4 sin.X/rzcos.iW 'cos.Z'cos.^l, (739)

io that, for a first approximation,

3L = — cos. M'p (740)

^L sin. 5 L =z cos. 2 M' p sin. p (741

)

psin.pnK5.Lsin. $ L=z sin. 2 M' p sin. p

— sin. M1 cos. U sin. <J D .p

cos. L' sin. B sin. D d D i~mc%\
P> (742)

cos. A
and (736) becomes

*L=z— cos. JBcos.Z / .P-(-sin. JBsin. JL / .P[cos.(D+ aI>)

+ Jsin. !><>Z)]

=z— cos.B cos.Z/ .P+sin.Psin.Z/cos.(Z>-f J d ^J^, (743)

and formulas (731) and (743) agree with the rule in the Navi-

gator [B. p. 404].

141. Problem. To find the parallax in right ascen-

sion and declination.
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Parallax in right ascension and declination.

Solution. Formulas (731) and (743) may be applied imme-

diately to this case, by putting

B = the altitude of the equator = the co-latitude,

L == the true declination,

U = the apparent declination,

D = the right ascension of the body diminished by

that of the zenith = the hour angle of the body.

&L = the parallax in declination,

$D == the parallax in right ascension.

142. Corollary. The value of 3 L may, in this case, be

found by a somewhat different process, which is quite con-

venient when the altitude of the body is required to be calcu-

lated. Draw PN to bisect the angle MPM', and draw MH
and M 1H 1 perpendicular to PN, and we have nearly

d L == HIP = HN+H'N'
= MN cos. N+M'N cos. N
= {MN + M'N) cos. N = MM' cos. N
= P cos. A cos. N. (744)

Now, in the triangle PZN, we have

PZ = co-lat. ZPN—D + i5D t

and may take

PN = 90° — L, ZN = 90° — A,

so that PZ, ZPN, and PN are given, to find ZN and N.

This method of calculating the parallax in right ascension and

declination is precisely that used in [B. p. 443] for calculating

from the relative parallax the corrections for right ascension

and declination.
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Apparent diameter.

143. The apparent diameter of a heavenly body is

the angle which its disc subtends.

144. Problem. To find the apparent semidiameter

of a heavenly body.

Solution. Let O 1
(fig. 56.) be the centre of the heavenly

body, A the observer, and A T the tangent to the disc of the

body. The angle TAO 1
is the apparent semidiameter. Let

R
x
== OT

° = OAT
r =z AO',

we have sin. a
OT

' AO' r
(745)

Hence,

body,

by (fig. 53.), if A is the apparent altitude of the

> sin. a
R, sinP

~'P)
(746)R cos.(A

a
R

1
sec,.(A--P)- (747)

145. Corollary. If 2 is the horizontal semidiameter, we have

which is also the semidiameter, as seen from the earth's cen-

tre.

Now R
x
— 0.2725 R (749)

R = 3.67/2, (750)

whence log. -^ = 9.43537, (ar. co.) = 0.5646, (751)
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Augmentation of semidiameter.

so that formula (748) agrees with [B. p. 443. No. 10 of the

Rule].

146. Corollary. If <J a is the augmentation of the semi-

diameter for the altitude A, we have by (747), and putting

A 1 = A — b,

P R i _ PR
l
cos.(A'—p)

~ .Rcos. (^1-|~P)

~
12cos.il'

s
cos. (A 1 — p)

cos. A'

sin. p sin. A'= 2 + 2 *-—
1

cos. A'

=z 2 + 2 s in p sin. A (752)

<J a — 2 sin. P sin. A = 2 P sin. 1" sin. A

= L?l p2 gin. 1" sin. 4. (753)

Now for the mean horizontal parallax of 57' 30", we have

log.^ P 2 sin. 1" = 1.19658 (754)

4r P 2 sin. 1" =5 15.72, (755)
It

agreeing very nearly with the explanation to Table XV of the

Navigator.

147. Corollary. The augmentation can also be calculated

without determining the altitude. Thus, from (752)

/COS. A ^\ /-y-„v

32*
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Augmentation of semidiameter.

But from (fig. 55.) and (731)

sin.(D+ sD). cos. (L—dL) __
cos. A = sin. ZM' = - !—

.
' „—^ ' (757)

sm. Z v
'

rrnr Sm « & C0S - -^ /~^v
cos. 4' = sm. ZM= ;

—=

—

(758)
sin. Z v

'

cos. A
1
_sin. (Z> + <?Z)).cos. (Z* — <sZ)

cos.il' sin. Z> cos. L

_ cos. jPcos. (L— 3L)SD cos.(L—3L)__
cos. Z, . sin. D cos. i

_ P.cos.ff.sin .ffsin.(Z>+ <?l>) cos.(Z-<?Z)

cos. Zr sin. D \ cos. X
Now the latitude of the moon is so small, that, in the first

term, we may put

cos. 1=1, (760)

which gives by (756), and putting

H=z ZP. cos. D sin. B (761)

H<=4 C0S ' {L- dV --l\ (762)
\ cos. L J

'

**= H+ H cos. DdD + H>

= H+H.P.cos.Dsm.B + H'

= H+~+H'. (763)

Now we have by (761) and (762)

H=zi2.p. [sin. (B + D) + sin.
(B — D)] (764)

H'= -2- (tang, i .^ i + cos. d L — 1), (765)

and formulas (763 to 765) agree with the method of calculat-

ing the augmentation of the semidiameter given in Table
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XLIV of the Navigator. The three first parts of this table

are calculated for the value of 2,

2 = 16' = 960",

whence £s.P = 8".18.

The fourth part of the table is the correction which arises

from the difference between the actual value of 2 and that as-

sumed in the three former parts. If we put

9' a — the value of 9 a for 2 = 16',

we have, by (755) and (748),

9a :?'•<, ='**''. (16
7

)
2 (766)

22
d — & a

256

^+(£- 1 )"
2 2_ 256

. d' a- " ' 256

= ,.+ £±!«>£=>S»..
<767)

as in the explanation of this table.

148. Examples.

1. Find a planet's parallax in altitude, when its horizontal

parallax is 25", and its altitude 30°.

Am. 22".

2. Find the moon's parallax in latitude and longitude, when

her horizontal parallax is 59' 10".3 ; her latitude 3° 7' 19" S.,



380 SPHERICAL ASTRONOMY. [CH. XI.

Parallax in latitude and longitude.

her longitude 44° 36' 16"; the altitude of the nonagesimal

37° 56' 14", its longitude 25° 27' 16", the latitude of the place

43°17/ 18// N.

Solution.

Reduced parallax = 59' 10".3— 5".3= 59' 5 //=3545"

Reduced latitude = 43° 17' 18"— IT 27":= 43° 5' 51"

D = 44° 36' 16" — 25° 27' 16" = 19° 9'

3545 3.54962 3.54962 3.550

37° 56' 14" sin. 9.78873 cos. 9.89691 sin. 9.789

3° 7' 19" sec. 0.00064 3° 7' 19" cos. 9.99936

*

3.33899 46' 32" 3.44589

9.9989919° 9' sin. 9.51593 3° 53' 51"

12' 2.85492 4630" 3.44552

19° 15'

19° 21'

3"

sin. 9.52027 3° 53 41" sin. 8.831

3D =12' 2.85926

— 2' 20"

log. 9.975

19° 21' 3" 2.145

* Z, = 44' 10"

3. Find the moon's parallax in latitude and longitude, when

her horizontal parallax is 60' £".9; her latitude 1° 30' 12" N.,

her longitude 130° 17', the altitude of the nonagesimal 85° 14',

its longitude 125° 17', the latitude of the place 46° IF 28".4 N.

Ans. Parallax in longitude == 5' 18"

Parallax in latitude =s 3' 30",5.
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Augmentation of semidiameter.

4. Calculate the parts of Table XLIV, when the argument

of the first part is 3s 19° = 109°
; that of the second 12".4,

the moon's true latitude 1° 20' N., the moon's parallax in lati-

tude 50', the sum of the three first parts 13", and the moon's

horizontal semidiameter 14' 50".

Solution. 8". 1845 sin. 109° — 7".74 = Part I.

(12" 4>*

Part III = 960" [sin. 50' tang. 1° 20' — 1 + cos. 50']

= 960" [sin. 50 / tang. 1° 20' — 2 sin. 2 25']

= 960" [0.00023] en 0".22.

,
30 50" X 1' 10" 13"X 30.83X1.17

Part IV =—13"X
256'

~~
256

= — 1".83.

5. Calculate the parts of Table XLIV, when the argument

of the first part is 2* 16°, that of the second 15."5, the moon's

true latitude 3° S., the moon's parallax in latitude 307

, the sum

of the three first parts 11", and the moon's horizontal semi-

diameter 15' 20".

A?is. Part I = 7".94

Part II = .25

Part III=:—0.48

Part IV :=— .90

6. Calculate the number of Table XV, when the altitude

is 45°.

Ans. 11".
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Augmentation of semidiameter.

7. Calculate the augmentation of the moon's semidiameter

in Example 2; when the horizontal semidiameter is 16' 50".

Solution. Part I = 6".87 + 2".58 z= 9".45

Part II = .09

Part III := —1 .02

sum =? 8".52

Part IV z= .91

augmentation = 9".43

8. Calculate the augmentation of the moon's semidiameter

in Example 3, when the horizontal semidiameter is 15' 30".

Ans. M?',83.



<§> 151.] eclipses. 383

Solar eclipse*

CHAPTER XII.

ECLIPSES.

149. A solar eclipse is an obscuration of the sun,

arising from the moon's coming between the sun and

the earth ; and occurs therefore at the time of new
moon.

It is central to an observer, when the centre of the

moon passes over the sun's centre. It is total, when
the moon's apparent disc is larger than the sun's, and

totally hides the sun. It is annular, when the moon's

apparent disc is smaller than the sun's, but is wholly

projected upon the sun's disc.

The phase of an eclipse is its state as to magnitude.

150. An occultation of a, star or planet is an eclipse

of this star or planet by the moon.

A transit of Venus or Mercury is an eclipse of the

sun by one of these planets.

151. Problem. To find when a solar eclipse will take

place.

Solution. Let O (fig. 57.) be the sun's centre, and O
l
the

moon's centre at the time of new moon, and let

I?
z= the latitude of the moon at new moon

== OO^
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When a solar eclipse will happen.

Let ON be the ecliptic, and N the moon's node, so that N0
1

is the moon's path. Let

N= the inclination of the moon's orbit to the ecliptic
;

Draw OP perpendicular to the moon's orbit, and if, when the

moon arrives at P, the sun arrives at O, the least distance of

the centres of sun and moon is nearly equal to O'P. Now
the triangle OPO 1 gives

OP — p cos. N=p — P(l— cos. N)
= f*

— 2 p sin. 2 I N = /»— i p sin. 2 N
n = ratio of the sun's mean motion divided by the moon's

= TV nearly, (768)

we have OO' = n X O
x
P = nfi sin. N.

Draw O'R perpendicular to OP, and we have nearly

OR= OP — OP =i OO' sin. N
= n p sin. 2 N.

Hence

OP — p_
( J+ n ) /» sin. 2 iV:= P-±'ftP sin. 2 iV. (769)

The apparent distance of the centres of the sun and moon

is affected by parallax, and the true distance is diminished

as much as possible for that observer, who sees the sun and

moon in the horizon, and OP vertical, in which case the

diminution is equal to the difference of the horizontal paral-

laxes of the sun and moon. Let, then,

P z=z the moon's horizontal parallax,

w = the sun's horizontal parallax,

4 =. the apparent distance of the centres,

we have

the least apparent dist. = OP — (P— n)

~p— &p8in.*N—P+n. (770)
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When a solar eclipse will happen.

Now, an eclipse will take place, when this least apparent

distance of the centres is less than the sum of the semidiame-

ters of the sun and moon. Thus, let

s =z the moon's semidiameter,

a s= the sun's semidiameter.

In case of an eclipse, we must have

p_£ /s sin. 2 N—P + 7r <s + cr, (771)

or ?< p — 7r + s + (7 +T2"^ sin -
2 N-

(772 )

152. Corollary. We have, by observation,

the greatest value of P = 6V 32",

the least value = 52' 50",

the mean value == 57' 11",

the greatest value of ^ = 9",

the least value = 8",

the greatest value of s = 16' 46'',

the least value = 14' 24",

the mean value — 15' 35",

the greatest value of <* •=. 16' 18",

the least value = 15' 45",

the mean value — 16' 1",

the greatest value of N — 5° 20' 6",

the least value =z 4° 57' 22",

the mean value zzz 5° 8; 44".

Now, in the last term of (772) we may put for N its mean

value, and for p its mean value obtained by supposing it equal

to the preceding terms, which gives

33
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Limits of a solar eclipse.

p=P — 7U + s + o=8& 38" = 5318" (773)

^=3102"
sin.N= sin. 5° 8' 44" = 0.09, sin. 2 N= 0.008

T\p sin.a iV = 25 ;/

, (774)

whence (772) becomes

p < P — tt + f + a + 25". (775)

153. Corollary. If, in (775), the greatest values of P, 5,

and a, and the least value of n are substituted, the limit

p < 1° 34' 52"

is the greatest limit of the moon's latitude at the time of new

moon, for which an eclipse can occur.

154. Corollary. If, in (775), the least values of P, s, and

o, and the greatest value of n are substituted, the limit

p < 1° 23' 15"

is the least limit of the moon's latitude at the time of new

moon, for which an eclipse can fail to occur.

155. Problem. To find the places where a given

phase of a solar eclipse is first and last seen.

Solution. The distance of the centres of the sun and moon

will first be reduced to a given apparent distance jf
at that

place where the moon is vertically above the sun and the

lower limb of the moon just beginning to rise. Let

P — the relative horizontal parallax of the sun and moon,

= P — *u, (776)

in which it is advisable to take for P its reduced value for the
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Places where solar eclipse begins and ends.

latitude of 45°, because the latitude of the required place is

not known.

For the time of new moon, let

D = the moon's declination,

d == the sun's declination,

R ==. the diff. of right ascension of sun and moon,

— the moon's right ascension — the sun's,

D
x
z= the relative hourly motion in declination,

ae the moon's motion — the sun's,

R
1
— the relative motion in right ascension.

Let S (fig. 58.) be the sun,Mthe moon, MM' the moon's relative

path, that is, the path which it would describe if the sun were

stationary, and the moon's motion were the relative motion ; let

SP be perpendicular to MM', and N be the north pole. The
zenith of the place is in the line SMZ, which joins the cen-

tres of the sun and moon, and at a distance SZ of about 90°

from them. Let

t == the angle CSP

k = MSP

p = SP.

Join NP and draw PR\ perpendicular to NS,

RPC = i

we have

PNR R
x

PNR
CR

~~ D
x

~~ PRtzn.i

1 1

"sin. NR tan. i cos . D tan. t
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Places where a solar eclipse is first seen.

whence

tan. is Dl - (777)R
x
cos. D y

'

p = CS. cos. i— (D — d) cos. i (778)

PJRzzrpsin. s, CR z=:ps'm. i tan./, PC— p tan. i.

Let then

£ zzz the interval between the moon's passing from P to C,

CJR » sin. i . *±L**i

-!>,- i>,
—"

,

v ,%/
;

let

» sin. ic= ' X 3600" ('80)

£ (in seconds) = c tan. i. (781)

Again,

let ^' = !£# =z the true dist. of centres of sun and moon,

we have J' — j -\- P' (782)

cos. k S= —
;

J'
(783)

MP s= p tan. A;, (784)

let t — time of describing ilffP,

we have * zz= = c tan. A; (785)

" a — itftfiV= — i zp *
s (786)

the positive values of a being reckoned towards the east, so

that the upper sign corresponds to the beginning, the lower to

the end of the eclipse.
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Places where eclipse begins and ends.

Finally, if L = the latitude = 90° — ZN
h = the hour angle after noon = ZNS,

the triangle ZNS gives, by § 39,

sin. L = cos. d cos. a (787)

tan. a #.«*•».
tan. h = :

—y. (788)
sin. a

156. Corollary. The value of 4 is for the beginning or

ending of an eclipse,

4 = s + a
; (789)

for the beginning or ending of total darkness in a total eclipse,

j = s — 0', (790)

for the forming or breaking up of the ring in an annular

eclipse,

J = a — s
; (791)

for the central phase,

J = 0. (792)

157. Problem. To find the places for which a given

phase of the eclipse is seen at sunrise or sunset.

Solution. Let M (fig. 59.) be the centre of the true moon,

at any time after the first formation of the phase J and before

its end, S that of the sun, m that of the apparent moon af-

fected by relative parallax. Since the sun and moon are in

the horizon, we have

Mm tea P1

,

also m S =. 4.

33*
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Places where eclipse begins at sunrise or sunset.

The zenith Z is in the line Mm, at the distance

ZS — 90°

from S, let N be the north pole. Join MN, and draw Ng
perpendicular to NS, and the right triangle NMG gives, by

putting

D z= the declination of g

cos R = tang.Ng cotan.MN
*r tang. D cotan. 2> =^^, (793)

whence, by (287) and (52),

sin.(Z> — D) 1— cos. 22 ^ , ^
. , ° n (

3= T-j ^ xac tang. 2 J R, (794)
sm.(Z?-f Z> ) 1+ cos. 22 6 2

'
v

'

or, since D — D and R are small,

D — D =i±;R2 sin. 1" sin. 2 D (795)

D = D + | jR2 sin. 1" sin. 2 Z>. (796)

Let now, z zr g-tf, y = i^^, S=MSg,
and we have z z= D — d (797)

y Q
— R.cos. D (798)

tan. S = ^ (799)

4Mb a: sec. A (800)

Now since Zilf and ZS are nearly quadrants, they are

nearly parallel at their extremities If and S, so that if

b z=z MSZ = m MS, (801)

P'-l-j P'— J
and q = _^ ql _ __^

9 (g02)
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Places where a phase is seen at sunrise or sunset.

we have sin. J b = V (g~^2/^'~ g,)

, (803)

whence the triangle NZS gives

ZNS—S^m (804)

sin. JLr=cos. (S^fm) cos. d, tan. hz=—tan.(&=pm) cosec d. (805)

158. Corollary. Since M m may be taken on either side of

MS, there are two places for each place M
y
except when

J = J -f P'
t (806)

which corresponds to the beginning or to the ending of the

phase, or when

J <P' — J. (807)

159. Corollary. When the nearest approach 4' of the true

centres is less than P'— ^, the places at which the phase J

are seen in the horizon are upon two different oval curves.

160. Corollary. When the nearest approach 4' of the true

centres is greater than P'— j, the places at which the phase 4

are seen in the horizon are all upon one curve, which intersects

itself, and is formed like a figure 8 much distorted ; and in

this case this curve is the northern or the southern boundary

of the eclipse.

161. Corollary. The values of x
Q
and y might be found

more easily, but less accurately, by the formulas

tang, k = - (808)

* = p sec. k (809)
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Limits of a solar eclipse on the earth.

Sz=:— i^Jc (810)

x = J' cos. 8, y == 4' sin. S, (811)

and from the approximate value of L, obtained by this pro-

cess, an accurate value of P' may be found, which may be

used in the calculation by the process before given.

162. Problem. To find the curves of extreme north-

ern and southern places at which a phase is seen.

Solution. When the nearest approach is greater than P'— ^,

one of the limiting curves is, as in § 130, the northern or

southern portion of the rising and setting curve, accordingly

as the moon passes to the north or to the south of the sun.

The other limiting curve consists of those places, at which

the nearest approach of the apparent centres is equal to 4\

and these are the places which compose both the limiting

curves, when the nearest approach is less than P'— ^. The

eastern and western limiting curves are always those of rising

and setting, and at the points where the rising and setting

curves cease to be the limiting curves, the phase J is one of

nearest approach, and at the same time is in the horizon. We
have, then, only to consider at present the places where the

phase 4 is one of nearest approach.

For this purpose, let M (fig. 60.) be the true moon's centre,

m the apparent relative moon's centre, S the sun's centre,

N the north pole, Z the zenith of the place ; draw m r, Mg
perpendicular to N&. Let

D 1
z=z the declination of m

R' zs m NS

% = Zm, M=z NmZ, h = ZNS
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Limits of a solar eclipse on the earth.

MNm = relative parallax in right asc. = R — R 1

— P> cos. L sec. D sin. (h— R) (812)

x=zrnhz=z D—D'— relative paral. in dec. — P' sin. z cos. M=.

c± P1 [sin. L cos. D— cos. £ sin. Z>' cos. (h—R )] (813)

y z=hM= (R— R) cos. D = P' cos. L sin. (h — R')

— P> sin. | sin. M (814)

Now, by the diurnal motion, the angle h will increase for

the instant <U, of an hour, by the quantity

15° U,

and the changes in the other terms of x and y will be too

small to be sensible in these small quantities ; so that the in-

crements of x and y.will be, by (13) and (15),

dx = 15° P' #t cos. L sin.D 1
sin. (h—R)~15° y st sin./)' (815)

dy = 15° P> H cos. L cos. (h — R) (816)

— 15° P' d t (cos. z cos.D 1— sin. % sin. D 1 cos. M

)

m 15° P d t cos. s cos.D— 15° 2: Jt sin. Z>'. (817)

Again, if

u=Sr
9
v — mr, i

/=rSM
} (818)

we have

u = ^ cos. i' = x— z , v — J sin. #= y — y, (819)

and if w m' is the apparent relative orbit of the moon, it must

be perpendicular to Sm, because m is the point of nearest

approach. Hence if m! is the place of the moon at the end of

the instant S t
y
we have

$u z=l Sx— dx =z— mm' sin. i'

= 15°dtsin.D' (y — js'in.i') — 9x (820)
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d v 3= <$y
o
— dyzzzmm1 cos. i

1 as—l5°P'd 1 cos. z cos.D 1

+15° (x + D cos. i>)*t sin. D' + ty
, (821)

whence m m' sin. %' — — d u cos. i
1 = dv sin. z

v

z=—15° dt sin. D' (y cos. fl—^sin. i' cos. i') +<5a: cos. i' (822)

= 15°a^sin.Z> /
(a: sin. I'-J-^sin.i' cos. 2

V
)

+ dy sin. i
1— 15° P' $ t sin. i' cos. z cos. D 1

.

Now Z)' differs so little from d, that d may be substituted

for it in this equation, and we have also

—9. — the hourly motion in relative declination = D
1

d
*

y—- sec. D = the hourly motion in relative dec. = R lt
d t

and if we put

__ R.cos.D D,A TW^V' B -T^^T' (823)

(822) becomes, by dividing by 15° $t sin. 1",

P' sin. It cos. z cos. cZ= (A -f-
z sin. d) sin. t'

_
(
b— # sin. d) cos. t'. (824)

Let now ;. and v be so taken, that

A -\- x sin. cf = i P 1 cos. z cos. d cos. *

P — y Q
sin. d =.* P 1 cos. z cos. e? sin. *, (826)

and (824) becomes

cos. z sin. i' — 2 sin. {%' — *) (827)

Asin.(ev— *) . 4 .. /000 \

cos. z == r-^-

;

- = a cos. r— 1 sin. y cot. 1'. (S28)
sin. ^

/

To find t', its value may be, at first, assumed as equal to i, as
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it is nearly, because the true relative orbitPM is nearly parallel

to the apparent relative orbit m m'. Hence u and v are found

by (819), and thence

D 1 = d qp u (829)

R 1 = ± v sec. D 1

(830)

i> — D + i(R— JR) 2 sin.2D (831)

y — (R — R) cos. D (832)

x =D -D> (833)

V
tan. M— -

X

X

(834)

/QO£r\sin. z — _ _
P' cos. M [poo

J

and from this value of z, i' may be found by means of (828),

which gives

cos Z
cot. i — cot.*—

—

r—

,

(836)
x sin. * x

'

or if 9 is taken, so that

. cos. z ;_
sin. ^ sa Vol (

837
2 * cos. v

v
'

2 x cos. r sin. 2 <p

sin. v
cot. # =rf cot. v —r-—

—

*-

(838)

=; cot.* (1 —2 sin. 2 <p) = cot. v cos. 2
(p , (839)

whence new values of z and il^ may be computed. Then the

triangle NMZ can be solved by the usual process, and will

give the values of

h — R' = ZNM and L = 90° — NZ.
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163. Corollary. There are two points, m and m', at which

we should have

j = S m = Sm'
}

and therefore two zeniths, Z and Z {
r

, which correspond to the

two values (829-835).

164. Corollary. If t is the time of the phase J counted

from the middle of the eclipse,

p = SP

the perpendicular upon the orbit, and

k = MSP, k' = Mm S,

we have, nearly, by (785),

MP ptzn.k p t ,__
tan. kf= -=- = * = / 840

Jf=<—t)3F#, (842)

which gives a rough method of computing Z and M.

165. Problem. To find the duration of a phase upon

the earth.

Solution. At the first and last points we have

Z=90°, PM—P',

cos. k' = F
^ t

(843)

t z= semiduration = c tan. k (844)

c.PM c.P' . _ /oj ^ x=TT =
Hp"

Sm# (845)
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Central eclipse.

166. Problem, To find the places where the eclipse

is central.

Solution. For these places m and £ coincide, so that

MS — 4 — P'sin. Z (846)

sin.^= ^, (847)

so that in the triangle ZSN> the two sides ZS, NS, and the

included angle >S' are given to find NZ and ZNS,

167. Corollary. For one place the eclipse will be central at

noon, and for this place we have, obviously,

J z=z diff. dec.

sm.Z=± (848)

L = d + Z (849)

west long, of place = app. Greenw. time of cent, eclipse.

168. Problem. To calculate the time of the beginning

or ending of a given phase of a solar eclipse for a given

place.

Solution. Find for a supposed time near the required time,

such as the time of new moon, the relative parallaxes in right

ascension and declination of the sun and moon, and their rela-

tive right ascension and declination. Hence their apparent

relative right ascension and declination is found by simple

addition or subtraction.

34 .
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Let D z=l their apparent relative declination,

R zzzz their apparent relative right ascension,

d r= the sun's declination,

W— the distance apart of their apparent centres,

j = the phase,

A zzzz the angle which W makes with the parallel of

so that

If

the supposed time is that of the beginning or ending ©f the

phase. But if W differ from J, find another apparent distance

W' of the centres for a time a little after the former one.

Then we have W— W : W — A z= diff. of supposed

times : the correction which is to be added to the first sup-

posed time to obtain the required time. If this correction is

large, a new computation must be made, using the time just

obtained as a new supposed time.

169. Corollary i The time of the phase of an eclipse or

occultation might also be calculated by the following process.

Let jR
L

zzz the relative hourly motion in right ascension,

D
x

zzzz that in declination
;

then let S (fig. 62.) be the centre of the sufij and M that of

the moon at the supposed time, CS the hour circle, A the

declination, and we have

D =z W sin. A, R cos. d — W cos. A (850)

R cos. d Jr^„ v

tan, A =——— (851)

W =± D cosec. AzzziR cos. d sec. A. (852)

W z= J,
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moon's centre at the beginning of the phase, B at the end
;

we have, then,

^o,™*- ™ CM R cos. d ,0,*™
tan. CSM= tan. S= -—= -

—

(853)
Co U

CT D
tan. i — tan. CMI— tan. FSI—~ = -f> ~3 (

854
)CM R

1
co$.d

K
'

S31 = W—y cosec. S=x sec. # (855)

SP = p = Wcos. PSM=z Wcos. (S+ i) (856)

cos. k\— cos. P,SU = cos. PSB z=z £ (857)

a =z ASM— S + i + k (858)

b =2 BSM =k — (S+ i). (859)

Then let t
x
=1 the interval of moon's passing from A to M,

t2 = the time from M to B
t

and we have

4If cos. i PPsin. ^o^itf cos, t

W sin. a cos. i

y x
cos. A;

W sin. b cos. £

2/ x
cos. /c

(860)

(861)

170. Corollary. This method maybe used by substituting

latitude and longitude for declination and right ascension,

and in this case the sun's latitude is zero, so that the formulas

agree with the rule in the Navigator [B. p. 425].
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171. Corollary, For the beginning or end of the eclipse the

phase is

J — the sum of the horizontal semidiameters of the

sun and moon increased by the augmentation

of the moon's semidiameter. (862)

For the beginning or end of total darkness in a total eclipse,

J = difF. of semidiam. -f- aug. of J) 's semidiam. (863)

For the formation or breaking up of the ring in an annular

eclipse,

J =z difF. of semidiam. — aug. of D's semidiam. (864)

172. Problem. To find the greatest magnitude of

the eclipse at any place.

Solution Let

D sz the relative apparent declination at the beginning

of the phase J
f

A — the angle which the line joining the centre of the

apparent sun and moon makes with the circle of

declination at this time,

D' and A' == the values of D and A at the end of the

phase J,

j z=z the nearest approach of the centres,

we have, by (fig. 61.), in which MNM 1
is the moon's apparent

relative orbit, S the sun, SD the circle of declinations,

SM z=z SM> zzz J
y
SN = j

,

D D'
sin. A — —

, sin. A' = —

,

(865)

J = J cos. % (A'— A). (866)
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Lunar eclipse.

173. The calculation of occupations is the same as

that of solar eclipses, except that the star has no parallax,

and its disc is insensible. The calculation of transits of

planets over the disc of the sun is the same as that of a

solar eclipse, except that the planet is to be substituted

for the moon.

174. Problem. To find when a lunar eclipse will

happen.

Solution. The solution is the same as in § 168, except that

the semidiameter of the earth's shadow at the distance of the

moon is to be substituted for that of the sun ; and the change in

the position and apparent magnitude of the moon from parallax

may be neglected, because when the earth's shadow falls upon

the moon, the moon is eclipsed to all who can see it. Now if

S (fig. 61.) is the sun, E the earth, GF the semidiameter of

the sun's shadow at the moon, we have

the app. semi. == FEG == EFL — EIF ~ P -— EIF

= P — (KES— EKI)

= P — G + *j

or rather, this would be the apparent semidiameter, if it were

not for the earth's atmosphere, which increases the breadth of

the shadow about g^th part ; so that

the app. semidiam. = f^- (P — a
-f-

tf),

and therefore, in order that an eclipse must happen, we must

have, by (762),

P = the latitude at the time of full moon,

P<iHP + "— a
) + * + &(* s^ 2 AS (867)

34*
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Lunar eclipse.

175. Corollary. In the last term of (867), we may put for N
its mean value, and for p its mean value obtained by supposing

it equal to the preceding terms, which gives

f S6 57' 35" z= 3455", ^ p= 2015"

sin.2 N= 0.008, TV p sin. 2 N == 16",

whence (867) becomes

/»<** (** + * — *) + * + 16"-
(
868

)

176. Corollary. If, in (868), the greatest values of P, n ,

and 5 are substituted, and the least value of a
f
the limit

£< 63' 45"

is the greatest limit of the moon's latitude at the time of full

moon, for which an eclipse can occur.

177. Corollary. If, in (868), the least values of P, n, and

s are substituted, and the greatest value of o
f
the limit

/J < 51' 57"

is the least limit at which an eclipse can fail to occur.

178. Problem. To calculate when a given phase of

a lunar eclipse will occur.

Solution. Let

D z=z the relative declination of the moon referred to

the centre of the shadow at time of full moon,

d =i the declination of the centre of the shadow ——
sun's declination,

R = the relative right ascension,

z= D'sR.A.-Q's R. A. ± 180°,

W— the dist. of centres at this time,

j — the given phase.
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Find W, as in the case of the solar eclipse, by Che equations

tang. A =z -5-^—= (869)b R cos. d v
"

W= D cosec. A. (870)

In the same way, find another value of W for another time

a little different from that of full moon, and finish the compu-

tation as in the case of the solar eclipse.

179. Corollary. The same method might be used if longi-

tudes and latitudes were substituted for right ascensions and

declinations.

178. Corollary. This eclipse might also be calculated by

the process of § 169, and the result is the same as the calcu-

lation in [B. p. 417].

179. Corollary. At the beginning or end of the eclipse, we

have

J = U(r+*-o) + s- (8H)

180. Problem. Given the latitude of the place and

the apparent time of the beginning or end of a phase of

a solar eclipse, to find the longitude of the place.

Solution. From the supposed longitude of the place, find

the Greenwich time of the observation, and for'this time find

the places of the sun and moon, and their relative parallaxes
;

and hence the Greenwich time of the phase. The difference

between the Greenwich time and the observed time is the

longitude.
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181. Corollary. Instead of calculating the parallaxes for the

rapidly varying positions of the moon, the moon ma\ be supposed

to be at the distance of the stars, while the sun is supposed to

be at a distance equal to the real distance of t ie moon. But

in this case the effect of parall ix, by bringing the sun's limb

into contact with the moon's, ca \ only be obtained by supposing

the observer to be in the situation of his antipodes, so that the

parallax may be reversed. In this case the s m's diameter must

be diminished, just as the moon's diameter is rea ly increased.

182. Corollary. The sun changes its place so slowly, that

its right ascension, corrected for relative parallax, as in the

preceding corollary, cannot diifer much from that of the moon,

at the time of conjunction in ri^ht ascension. For a time,

then, when the moon's true right ascens on i> nearly that of

the sun's corrected for relative parallax, find the values of

R s= the relative right ascension -f- parallax in R. A.

D z=z the relative declination -f- correction for declin.

d — the sun's declination corrected for relative paraL

R
x
= the hourly variation of R,

D
±
= the hourly variation of 2>,

D Q
— the diff. between the values of D at the time t

y
and

of the time of app. conjunction in right ascension,

t z± the time of apparent conjunction.

Then we have, by (fig. 62.), if £ is the sun's place corrected

for relative parallax, and BMA the moon's true orbit.

* = t +
-J-,

D = D + -|- D, = SI, (872)

tan. CMI= tang. * = jr^j (873)
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p = PS = D
Q

cos. i (874)

^~ m V D n cos, i #«**%
cos. FSA — cos. a — -^ z= —-5 (875)

^/ sin. ^L#2 ^ sin. (a -f* i) /q-7«\
^.i = —:

=z ;
, l

c ' D
;

sin. ^17>S cos. i

interval of moon's passing from A to I

AI cos. i ^4 sin. (a -f- *)

~~ R
%
cos. d ~~ R

x
cos. rf

(877)

time of obs. phase = * + S1"' ^ + *\ (878)
J.\/ « COS. CL

which agrees with [B. p. 463, from No. 12 to the end of the

rule].

183. Corollary. The diminution of the semidiameter re-

quired by § 181 is, by (753),

da = o.P. sin. l"zin*JLs (879)

or if a and P are expressed in minutes,

*<? = 3600. <r. P. sin. 1" sin. ^1

— T^. tf .p. 360000 sin. 1" sin. A. (880)

But 360000 sin. I" — 1.76, (881)

whence 1.76 sin. A is the factor of the table [B. p. 443].

184. Corollary. The latitude of the moon changes so slow-

ly, that its latitude at the time of the phase may be regarded

as the same with its latitude at the supposed time. The sun

is also in the ecliptic ; so that if we put

L = the moon's apparent latitude,

-^ — the apparent relative longitude,
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we have

J =*/(J* —L*) = */[{J+ L)(J— L)], (882)

from which the apparent and true longitude of the moon at

the time of conjunction may be computed, as in [B. p. 413],

and thence the longitude of the place.

185. Corollary, If both the beginning and end of the

eclipse are observed, and if

R — the app. relative right ascen. at the beginning,

R' -= that at the end,

D zz the apparent relative dec. at the beginning,

D' =z that at the end,

we have

D — D

The dist. gone by the moon=E = (R 1— R) cos. d sec. i.

Then, if ^1 (fig. 62.) is the place of the moon at the beginning,

B at the end of the eclipse, the three sides AS, AB, and BS
of the triangle ASB are given, and hence AF, ASF can be

found, whence

a == ASI= ASF+ FSI,

and R = AI. cos. i sec. d =z—: —f^r cos. ^ sec. a
sin. AIS

z= J sin. « sec. d,

whence the apparent right ascension of the moon at the in-

stant of the commencement of the eclipse can be found, and

thence its true right ascension and the Greenwich time of the

beginning.



^ 188.] eclipses. 407

Longitude from solar eclipse.

186. Corollary. The method of the preceding corollary is

the same as that [B. p. 407] ; except that latitudes and longi-

tudes are used, and the sun is in the ecliptic.

187. Corollary. The calculation of the longitude by

means of occultations is the same as that by means of

solar eclipses, as in [B. pp. 410, 414, 446].

188. Examples.

1. To find when and where the different phases of the

eclipse of Sept. 18, 1838, begin and end upon the earth.

Solution.

Greenw. mean t. of »ew moon =sa 7*56m 38*.2

J> 's true declination — D = 2° 43' 52".3

O's true declination = d — 1° 49' 15".5

D — d = 54'36".8z= 3276".8

3>'s hourly motion in dec. z=— 14' 10" .5

O's hourly motion in dec. —— 0' 58".

3

relative motion in dec = D
x
~— 13' 12".2 ==— 792".2

J) 's motion in right ascension ±z 26' 0".5

O's motion in right ascension z= 2' 14".7

rel. motion in right asc. = R
x
— 23' 45".8 =e 1425".8
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Solar eclipse of Sept. 18, 1838.

D
x

2.S98S3„ ar.co 7.101 17 n

R
1

ar. co. 6.84594

D sec. 0.00049 D—d 3.51545 3.55630

-29° 5' 4" tan. 9.74526n cos. 9.94147 sin. 9.68673„

p == 2863 //
.7 3.45692 3.45692

c 3.80112 3.80112

* —— 3518* 3.54638n

_ __ 58^ 38s
. time of middle= 7h 56m 38* -— t =z 8h 55?n

1 6*.

Now for the phases, we have

J) 's equatorial horizon, paral. =z

Q's equatorial horizon, paral.

Relative parallax for equator =
Reduction for lat. 45°

Relat. par. for lat. 45°

J)'s true semidiameter

Q's true semidiameter

For first contact J' = P> + 5 + o = 84' 18".2=5058".2

p. 3.45692

* ar.co. 6.29600 c 3.80112

= 53' 53".7

= 8".5

=2 53' 45".2

==

P'

5".3

: 3219"ZZZ = 53' 39".9z= .9

z=z s = 14' 41/ '.2

== a z=15 7 57* .1

k = 55° 31' cos. 9.75292 tan. 0.16314

— i — 29° 5' t — 9210* z= 2A 33™ 20* 3.96426

« —— 26° 26', m. t. of begin.= time of mid.— t— 6*21*56'

app. t. = 6h 21w 56s+ 5m 55* -= 6h 27m 51*= 96° 58'

b = 84° 36', time of end = time of mid. -f t = 1P 2SCT 36'

app. t. = 11* 28" 36*+ 6W— 11* 34* 36*= 173° 39'
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a cos. 9.95204 tan. 9.69647n

d cos. 9.99978 cosec. 1.49793

lat.= 63°3FN. sin. 9.95182 266° 20' tan. 1.19440

at beginning long. 335 266° 20'—96° 58'= 169° 22 ; E.

lat. =a 63° 31'+ 9' = 63° 40' N.

b cos. 8.97363 tan. 1.02444

d cos. 9.99978 cosec. 1.49793

lat — 5° 24 N. sin. 8.97341 90° IF tan. 2.52237,

at end long. = 173° 39'—90° 1 F=83° 28' W.

lat. = 5° 24 / + 2' = 5° 26' N.

For central eclipse,

P 3.45692

P' ar.co. 6.49215 c 3,80112

A: — 27° 13' cos. 9.94907 tan. 9.71107

— i = 29° 5' T = 3252* = 54™ 12s 3.51219

a == 1° 52' time of begin. == t. of mid. -r-81
l
m 4*

b = 56° 18'

app. time = 8* l
m 4s

-J- 5
m 57*= Sh 7m I

s= 121° 45'

time of end = time of middle— T z= 9* 49771 28*

app. time= 9"49w288+5w 59'zz:9*55m 27*:= 148° 52'

a cos. 9.99977 tan. 8.51310

d cos. 9.99978 cosec. 1.49793

lat. = 87°24 / N. sin. 9.99955 134° 17' tan. 0.01103

at beginning long. = 134° 17'— 121° 45'= 12° 32' E.

35
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Solar eclipse of Sept. 18, 1838.

b. cos. 9.74417 tan. 0.17593

d. cos. 9.99978 cosec. 1.49793

lat. = 33° 41' N. 9.74395 91° 13' tan. 1.67386

at end long. = 148° 52'— 91° 13' — 57°39 /W.

lat. = 33° 41' + 10' = 33° 51' N.

2. Find the places where the eclipse of Sept. 18, 1838, be-

gins or ends in the horizon af 8* Greenwich mean time.

Solution. g = I (P 1 + J) = 4139"

q>= £(p/_^) =919".l

time from middle eclipse = 55m 16* = 3316' = t

t 3.52061

c ar.co. 6.19888 p. 3.45692

k = 27° 40' tan. 9.71949 sec. 05273

— t = 29° 5' J1= 3233" 3.50965 ar. co. 6.49035

S= 1°15' i J'— 9'==697".4 2.84348

q — J = 2522".5 3.40183

P> ar. co. 6.49215

2)19.22781

== 48° 32' — — 24° 16' sin. 9.61390

S-m=—47°17/ cos. 9.83147 tan. 0.03465„

d cos. 9.99978 cosec. 1.49793

lat. — 42°41 / N. sin. 9.83125 268° 19' tan. 1.53158



$ 188.] ECLIPSES. 411
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Lat. = 42° 41' + 11 ' = 42° 52' N.

Greenwich app. time =: 8h 5m 57* =: 121° 29'

long. = 268° 19' — 121° 29' = 146° 50' E.

and at this place the eclipse is rising.

S+ m= 49° 47' cos. 9.81002 tan. 0.07286

d cos. 9.99978 cosec. 1.49793

Lat. == 40° 12' N. 9.80980 91° 32' 1.57078„

long. = 121° 29' — 91° 32' = 29° 57' W.

lat. z=z 40° 12' + 11' = 40° 23' N.

and at this place the eclipse is setting.

3. Find the place on the southern limit of the eclipse of

Sept. 18, 1831, which corresponds to the Greenwich mean time

of 8*.

Solution. Since the altitude is not known, the increase of

the moon's semidiameter is not known, but it may be supposed

at first to be 67/

, which is about its mean value. Hence

j=o + s + 6" =. 30' 43 '.3 = 1844 //.3

p — ^ = 1019"A

j 3.26583

i cos. 994147 sin.

sec.

3.26583

9.68673'

u =z 26' 52" 3.20730

d+u = 2° 16' 7" = D' 0.00034

R'= 897".2 = 14' 57" 2.95290,
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Solar eclipse of Sept. 18, 1838.

P
c

p— »
ar. co.

ar. co.

49' 11"

3.45692

6.19888 P'. ar.co.

6.99166

6.49215

3.00834

E
t

6.64746 W cos.

3.52061

9.50049

k'= 55° 0.16807 sec. 0.25042

— i = 29° 5' 4" % =? 34° 18' sin. 9.75091

M=—26° 44' 7" cos. 9.95089 tan. 9.70219n

Z= tan. 9.83388

6 = 31° 21' 2" tan. 9.78477 sin. 9.71623

a + D — 33° 37' 9" tan. 9.82274 sec. 0.07947

h—R= cos. 9.97950 tan. 9.49789n

L =z 32° 23' tan. 9.80224

For a more accurate determination.

P1 =z 53' 45".2 — 3".2 = 53' 42" = 3222"

s = 14' 41".2 + 11".6 = 14' 52".8

j = s + a = 30' 49".9 = 1849'.9

15° sin. 1" ar. co. 0.58204 0.58204

D
x

2.89883n R
x

3.15406

B =— 3026 3.48087n Z> cos. 9.99951

4 = 5440.1 3.73561

For 8* Gr. time we have D =z J> 's dec. = 2° 43' 5"

i R . 48" 2 log. 3.362 cZ =z Q's dec. = 1° 49' 12"

1" sin. 4.686 R= rel. R.A. = 50".l

2Z>= 5°26' sin. 8.976 D = D

2> — 2> = 6.924 a; = 2> — rf == 53' 83"=3233'
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Solar eclipse of Sept. 18, 1838.

R. 1.69984

D COS. 9.99951

x oVo = 60" 1.69935 3.50961

d sin. 8.50187

102".7

8.50187

2" 0.20122 2.01148

B— 3026" A = 5446". 1 0.00022

3028" 3.481 16„

5542".8ar. co. 6.25628

tan. 9.73744„

2 v = 58° 40' sec. 0.28396

5542".8 3.74372

P' ar. co. 6.49187

sec. 0.05671

•'==—46°25/

tan. 0.02137„

2 (p = sec.

<p = 29° 20'

%' cos. 9.83848

J 3.26926

z

2

x 0.29252

cos. 9.91703

ar. co. 9.69897

tt=21'21" 3.10774

rf+ M = 2°10 , 33"

2)19.38019

sin. 9.69004

sin. 9.85996„

3.26926

sec. 0.00032

D j± 2°43 / 5" —R'=—1347".5 3.12954

x = 32' 32" = 1952", R—R=z 1297"'.4 3.11307n

1> cos. 9.99951

3.11258
?i

35*
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Solar eclipse of Sept. 18, 1838.

y

P> ar.

3.11258,

co. 6.49187 x

cosec. 0.25566

3.11258,

ar. co. 6.71175

COS.

tan.

tan.

tan.

cos.

tan.

M tan. 9.82433

sin. 9.81834

sec. 0.13824

9.92002

z sin. 9.86011 0.02160

s+D'=z

41° 16' 24"

43° 20'

— 30° 8'

— 31° 30' 8" L.

122° long, :

9.94162

9.97472

k—R'— tan. 9.78091

zz 38°56'N.

= 153° 20' W.

9.93250

H—
9.90722

lat. == 38° 56' + 1 1'= 39° 7' N.

4. Find where the solar eclipse of Sept. 18, 1838, is central

for the Greenwich mean time of 9\

t = 4W 44s =
P

284s

3.45692

sec. 0.00044

c ar. co.

tan.

tan.

cos.

tan.

tan.

cos.

tan.

2.45332

6.19888

Jc=z2° 34' 8.65220

J'

P ar

3.45736

. co. 6.49215

Z
s z= 31° 39'

sin. 9.94951

tan. 9.78987

0.29106

9.93007

4:= 59°

d + d — 60° 49'

sin. 9.93304

sec. 0.31193

0.22113

0.25298

h =z 47° 18' tan. 0.03484

L =z 50° 32'

9.83140

0.08438
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For a more accurate determination.

P> — 53' 45".2— 6".2= 53' 39" == 3219 7

D = 2° 28' 54", df = 1° 48' 13", D cos. 9.99959

R — 25' 5".4 = 1505 ".4 3.17765

x = 2>— d=40'41"— 2441" 3.38757 6.61243

£ cos. 9.93013 sec. 0.06987 tan. 9.78967

j' 3.45744

P'. ar. co. 6.49228

tan. 0.29208 sin. 9.94972

q =z59° 3' 24" tan. 0.22221 sin. 9.93332

4 -f <Z = 60° 51' 37' tan. 0.25375 sec. 0.31252

:47°20 / cos. 9.83100 tan. 0.03551

Z,z=50°33' tan. 0.08475

lat. bz 50° 33' +11' = 50° 44' N.

long. = 47° 20'— 136° 29' = 89° 9' W.

Calculate the solar eclipse of September 18, 1838, for the

city of New York.

Calculation for 9^ Gr. mean time, by the principles of § 182.

Gr. app. t. —9h 5m 57sA iz=:40o 4240"—1120"—40° 31'20"

N.Y. long. =4ft 56m 4S
.5

h =z4A 9wl 52*.9P.M. P'= 53' 45".2—4".6= 53' 40"6.
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Solar eclipse of Sept. 18, 1838.

P>. = 3220".6 3.50794

L. cos. 9.88090 9.88090 9.88090

15 ar. co. 8.82391

2 h= Sh 19"* 45*.8 sin. 9.94782

S' 2.16057

D sec. 0.00041

2" 24'.9 2.16098

2 h'=8h 17m 21% A=4A 8wl 40*.5, log.Ris. 4.72684 sin. 9.94661

£—d=38°43'7"N. cos. 78022 d cos. 9.99979

40507 4.60753

22° 2' N. sin. 37515 cos. 9.96706 sec. 0.03294

M cos. 9.83794 sin. 9.86045

P'. 3.50794

dd = 34' 15".6 N. 3.31294 £' 2.16057

9 = 2° 22' 29" cos. 9.99963 sec. 0.00037

sR=z2m 24*.9= 36' 13" = 21 73" 2.16094

JR—*JK ;=— 668" 2.82478„

D— d< = & 26" = 385" ar. co. 7.41454 2.58546

8 = — 60° 1' tan. 0.23895„ sec. 0.30125

W 2.88671
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Solar eclipse of Sept. 18, 1838.

D
x
= 792".7 2.8991 l n

R
L

z=z 1425" ar. co. 6.84619

d sec. 0.00037

i = — 29° 6' tan. 9.74567n W. 2.88671

iST-f- f = —89° 7' cos. 8.18798

JP- 1.07469

For beginning of eclipse.

^ = 30' 38".3 := 1838".3 ar. co. 6.73565

P

sec. 2.18966

1.07469

k = 89° 38' cos. 7.81034

W. 2.88691

3600' 3.55630

l ZZl cos. 9.94137

^ ar. co. 6.84619

tf sec. 0.00037

a= 31' sin. 7.95508

t, — — 40OT 3.37568

mean time at N. Y. 3ft 24771

,

For a more accurate calculation.

Gr. mean time — 8h 20 7*

15 P' cos. L 2.21275

2h= 6" 59m 44*.6 sin. 9.89928

Gr. m. t. s= 8* 20w.

h = 3* 29™ 52'.3

d — 1° 48' 6SKUI

R = 555".0

£' 2.11203

2>— 2°38'21".l sec. 0.00046

2m 98
.6 2.11249
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Solar eclipse of Sept. 18, 1838.

L cos. 9 88090 9.88090

2A'= 6*57OT 35*/i '= 3/i 28m47*.5 log. Ris. 4.58778 sin. 9.89770

£.—d=38 42'27" N. cos. .78033 d. cos. 9.99978

.29407 4.46846

29° 5' 42" N. sin. .48626 cos. 9.94142 sec. 0.05858

M cos. 9.86114 sin. 9.83718

P>. 3.50794

&d=. 34' 4".l N. 3.31050 S' 2.11203

d' = 2° 22' 57" cos. 9.99962 sec. 0.00038

dR= 2m 9s 55= 32' 23".2= 1943".2 2. 1 1243

R— 6 R = — 1388".2 3.14245„

D—d = 15' 24".l=924'.l ar. co. 7.03428 2.96572

S = —56° 19' 32'' tan. 0.17635„ sec. 0.25612

D
x
=— 792.5 2.89900„ W. 3.22184

R
x
= 1425.3 ar. co. 6.84610

d'. sec. 0.00038

i = — 29° 5' 48" tan. 9.74548n

8 -f i = — 85° 25' 20" cos. 8.90207

2.12391

4 = 30' 30".8 = 1830".8 ar. co. 6.73736

& = 85° 50' cos. 8.86127
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Solar eclipse of Sept. 18, 1838.

k sec. 1.13873

w 3.22184

3600" 3.55630

i cos. 9.94141

R
x

cos. d ar. co. 6.84648

a= 24' 40" sin. 7.85583

1
1
= — 12* 28* 2.56059

mean time at N. Y. 3* 17m 20% Gr. time = 8h 13w 24*.

For a still more accurate calculation.

Gr. mean time Sh 13m 30* h = 3* 23m 22*.3

15 P< cos. L 2.21279 d = 1° 48' 59".3

2 ft=6M6m 44*.6 sin. 9.88954 R s= 401.1

8' 2.10233

D = 2° 39' 53".2 sec. 0.00046

2W 6*.7 2.10279 L. cos. 9.88090 9.88090

2h'=&Mm 37\9 h'=3h22m 18> log. Ris. 4.56222 sin. 9.88790

£,—d=38° 42' 21" N. cos. 78035 d cos. 9.99978

27727 4.44290

30° 12' 7" N. sin. 50308 cos. 9.93664 sec. 0.06336

M. cos. 9.86553 sin. 9.83216

P' 3.50798

dD=: 34'2".4N. 3.31015
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Solar eclipse of Sept. 18, 1838.

S f 2.10233

d' ss 2° 23' 1".7 cos. 9.99962 sec. 0.00038

S R = 2* 6 ff.68= 31' 40".2 = 1900 '.2 2.10271

R— 9 R = — 1499".l 3.17593n

D — tf ' = 16' 51".5 = 1011".5 ar. co. 6.99503 3.00497

S=z — 55° 58' 2" tan. 0.17048 sec. 0.25207

W. 3.25704 3.25704

jSf+t=— 85°3'50" cos. 8.93472

(3600"cos.*) -± R
x
cos. d = 0.34419^ ar.co. 6.73753

* = 85°7'32" sec. 1.07071 cos. 8.92929

a= 3 42" sin. 7.03193

t^— 50s
.

6

1.70387

Mean Gr. time == Sh 12m 39*4., N. Y. m. t. = 3h 16m 34*.9.

For beginning of annular phase.

J = V 15'.9 =: 75".9 ar. co. 8.11976

W. 2.88671 p 1.07469

k = Sr sec. 0.80555 cos. 9.19445

W 3600" cos. z 3.49767

JR
1
cos. d ar.co. 6.84656

a=— 8° 7' sin. 9.14980n

ft = 25™ 36s 3.18629n

Gr. mean time ac 9* 25m 36*.
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Solar eclipse of Sept. 18, 1838.

For a more accurate calculation.

Gr. mean time — 9^ 30OT

,
h = 4h 39™ 53s

.4

15 P cos. L 2.21266 d = 1° 47' 44".7

2A= 9?l 19™46s
.8 sin. 9.97291 jR = 2217".9

£' 2.18557

2>= 2 21'48".2 sec. 0.00037

2™33s
.4 2.18594 L. cos. 9.88090 9.88090

2A/z=9A 17?ra 138
.4 A /=4*38w 36*.71og.Ris. 4.81444 sin. 9.97202

L—d=38° 43' 35" N.cos. 78015 d cos. 9.99979

49560

cos.

COS.

pi

4.69513

16° 31' 56" N. sin. 28455 9.98166 sec. 0.01834

M 9.82528 sin. 9.8712C

3.50785

3d = 34' 24"A 3.31479 S'. 2.18557

61 = 2° 22' 19".l cos. 9.99963 sec. 0.00037

> JR =5 2301" == 13s
.4 a # = 2.18594

R — *R=z— 83". 1 1.91960n

Z> — d'zn— 30".9 ar.co. 8.45967n l.48996n

-ST — —- 112° 40' 54" tan. 0.37890 sec. 0.41 385„

D , =— 793" 2.89927n W 1.90381

R
x
= 1423".2 ar. co. 6.84674

d' sec. 0.00037

i ±2 — 29° 8' 50" tan. 9.74638n

36
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Solar eclipse of Sept. 18, 1838.

W 1.90381

S+i = — 141° 49' 44" cos. 9.89551,

W 1.90381 1.79932n

3600" -f- R x
cos. d' 0.40341 ^ ar.co. 8.14997

k ss 152° 51' 9" sec. 0.05071 cos. 9.94929n

a ss 17° 1' 25" sin. 9.28151

• cos. 9.94120

*! ss 38M 1.58064

Gr. m. time = 9* 30m 38M. N. Y. m. t. = 4* 34w 33».6.

In the same way we should find for the end of the annular

phase.

N. Y. mean time ss 4* 38m 12%

and for the end of the eclipse,

N. Y. mean time ss 5* 47m 54%

5. If the beginning of the solar eclipse of Sept. 18, 1838, had

been observed at New Orleans, in 1 at. 29° 57' 45" N., at 2h

19OT P.5 mean time, what would be the longitude of New Or-

leans ?

Solution. Let the supposed long, zs 6*

Greenwich mean time =. Sh 19w P.5, h ss 2* 24OT 58'

A

L ss reduced lat. = 29° 57' 45"— 9' 55" ss 29° 47' 50"

P'= 53' 45".3— 2".8 ss 53' 42 7.5= 3222".5

d ss 1° 48' 53".3

R=z 530".l
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Solar eclipse of Sept. 18, 1838.

P' 3.50820

15. ar. co. 8.82391

L. cos, 9.93841 cos. 9.93841 cos. 9.93841

2h=z4/l 49m 56s
.8 sin. 9.77174

8' 2.04226

D = 2° 38' 34".8 sec. 0.00046

23h'—l m 50\3 2.04272

2h'=z4:h 48m 6s
.5,7i< — 2h 24m 3s.2l R. 4.28132 sin. 9.76936

L—d=27° 58' 57" N.cos. 89115 d. cos. 9.99978

16577 4.21951

cos. 9.84045

cos. 9.83005

P'. 3.50820

sec.

sin.

sec.

sec,

W

cos.

46° 10' 3" N. sin. 72,538

ar

'. CO.

sec.

tan.

0.15955

M 9.86732

sd=z 25' 9"

d'—2° U'2'3
3.17870

cos. 9.99967

3.05082n

. co. 6.83194

2.04226

0.00033

iR = 1654".5 == 1110s
.3

Rz= sR — — 1124,"A
D — d' = 1472".5

2.04259

3.16806

S = — 37° 20' 16" tan. 9.88243,,

2.89894

6.84607

0.00033

0.09960

D
x
=• — 792<».4

22, = 1425".4 ai

d'

3.26766

i =3 — 29° 5' 20"

£ -f i = — 66° 25' 36"

9.74534

960198

2.86964
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Solar eclipse of Sept. 18, 1838.

i cos. 9.94145 p. 2.86964

W. 3.26766 J. ar. co. 6.73824

k — 66° tit 2" sec. 0.39212 cos. 9.60788

a = —20' 34" sin. 7.77689

R
x
cos. d' ar. co. 6.84640

3.55630

t = 60-.37 = lm 0*.37 1.78082

long. = 6h
l
m 0*.37 5= 90° 15' #'.

For a more accurate calculation.

Gr. mean time = 8h 20w

df= 1° 48' 52".8, D = 2° 38' 21".l

JR = 555' .4,

tf ' = 2° 14' 1".8 cos. 9.99967

R— dR=z— 1099".1 3.04 104n

D —d= 1459".3 ar. co. 6.835S5 3.16415

£' z=— 36° 57' 52" tan. 9.87656n sec. 0.09745

3.26160 3.26160

S + i =— 66° 3' 12" cos. 9.60840

3600 cos. i ~ J^ cos. eZ' 0.34415 2.87000

a =z 42" sin. 6.30882 ^. ar. co. 6.73821

66° 3' 54" sec. 0.39179 cos. 9.60821

*
x
= — 2*.02 0.30636

*ong.= 90° 14' 7" W.
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Solar eclipse of Sept. 18, 1838.

6. To find the times of the beginning and end of the annu-

lar eclipse of Sept. 18, 1838, at Washington, D. C, and the

times of the formation and rupture of the ring.

Extracts from the Nautical Almanac.

Greenwich mean time, of Sept. 1838.

mO* ©'s R. A. = 11" 38™ 25*.08, Dec. =. 2° 20' 14'.3 N.

18 .0 ©'s R. A. = 11 42 .61, Dec. = 1 56 58 .2 N.

19 .0 ©'s R. A. = 11 45 36 .16, Dec.= 1 33 39 .5 N.

20 .0 ©'s R. A. = ,11 49 11 .75, Dec. = 1 10 18 .6 N.

17 .0 equation of time sfs 5m 28 ff.55

18 .0 equation of time = 5 49 .57

19 .0 equation of time = 6 18 .57

20 .0 equation of time = 6 31 .53

18* 6h
3) 'i R. A. = III 39w 49t

.64, Dec. = 3° 11' 24",6 N.

18 7 ])'sR.A.zzll 41 33 .74, Dec. = 2 57 14 .9 N.

18 8 3) 'sR. A. = 11 43 17 .79, Dec. = 2 43 4 .6 N.

18 9 2) 's R. A. = 11 45 1 .79, Dec.= 2 28 53 .9 N.

18 10 D's R. A. =: 11 46 45 .75, Dec. = 2 14 42 .6N.

18 11 D 's R. A. = 11 48 29 .67, Dec. — 2 31 .0 N.

18 D 's semid.= 14' 4 1 ".5 Hor. Par.= 53' 54".8

18 12 3) 's semid.= 14' 41 ".1 Hor. Par.= 53' 53 .3

©'s semid. — 15' 57". 1 Hor. Par. — 8".5

Ans. Beginning of eclipse at 3* 5™15\6 W. mean time,

of ring at 4 23 46 .1

end of ring at 4 29 42 .3

of eclipse at 5 39 30 3
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Solar eclipse of May 15, 1836.

7. Calculate the time of the beginning and end upon the

earth of the solar eclipse of May 15, 1836, and the places

where it is first and last seen.

Extracts from the Nautical Almanac.

Greenwich mean time of May, 1836.

Ud h ©'s R. A.= 3/l 25- 5U3 Dec. = 18° 42' 21".0N.

15 3 29 1 .93 18 56 35 .9 N.

16 3 32 59 .30 19 10 31 .6N.

17 3 36 57 .25 19 24 7 .8 N.

14 equation of time z= 3m 56s.30

15 equation of time = 3 56 .05

16 equation of time zz 3 55 .24

17 equation of time = 3 53 .86

14 22 3)'sR.A,z=3 20 41 .89 Dec. s= 18 40 52 .9 N.

3 22 41 .69 18 51 11 .4 N.

3 24 41 .69 19 1 24 .7 N.

3 26 41 .88 19 11 33 .0 N.

3 28 42 .26 19 21 36 .1 N.

3 30 42.84 19 31 34 .ON.

3 32 43 .62 19 41 26 .6 N.

3 34 44 .60 19 51 13 .9 N.

15 6 3 36 45 .77 20 55 .9 N.

14* 12* J) 's semid. = 14' 52' .3 Hor. Par. = 54' 34' .5

15 J) 's semid. = 14 49.9 Hor. Par. = 54 25 .6

15 12 3>'s semid. = 14 47 .7 Hor. Par. = 54 17 .7

<g)'s semid. — 15' 49'.9 Hor. Par. = 8".5

14 23

15

15 1

15 2

15 3

15 4

15 5
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Solar eclipse of May 15, 1836.

Ans. Time of begin. z= Ud 23* 6- 30'

in Long. z= 76° 53' W., and Lat. =z 2° 10' S.

Time of central begin. = 15d 0* 18" 10*

in Long. = 98° 16' W., and Lat. = 7° 58' N.

Time of central end =z 15* 3* 44™ 44*

in Long. = 52° 41' E., and Lat. = 44° 50' N.

Time of end = 15d 4A 56m 24*

in Long. = 28° 51' E., and Lat. = 35° 13' N.

8. Find where the solar eclipse of May 15, 1836, is rising

or setting at 15d h S0m Greenwich mean time.

Ans. In Long. =z 90° 44' W. Lat. =- 21° 32' S.

and in Long. = 116° 42' W. Lat. = 42° 29' N.

9. Find the place which is upon the southern limit of the

above eclipse's visibility at the Greenwich mean time of 15d 3\

Ans. Long. = 10° 11' 36" W. Lat. = 21° 41' 24" N.

10. Find the place which is upon the northern limit of the

visibility of the annular phase of the solar eclipse of May 15,

1836, at the Greenwich mean time of 3* 11™ 27*.

Ans. Long. == 3° 8' 30" W. Lat. s= 56° 30' 54" N.

11. Find the place where the solar eclipse of May 15, 1836,

is central at 3A 11™ 27* Greenwich mean time.

Ans. Long. = 3° 53' 18" W. Lat. = 58° 29' 18" N.

12. Find where the solar eclipse of May 15, 1836, is cen-

tral at noon.

Ans. Long. = 36° 20' W. Lat. =s 49° 17' N.
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Solar eclipse of May 15, 1836.

12. Calculate the time of the beginning of the eclipse of

May 15, 1836, for the Observatory of Edinburgh.

Ans. Beginning of eclipse = l
h 32m 40s Edinb. M. time.

13. Suppose the beginning of the solar eclipse of May 15,

1836, to be observed to take place at 1* 36™ 35s
.6 app. time,

in latitude 55° 57' 20" N., and longitude about I2m W. ; find

the longitude of the place of observation.

Ans. Long. = 12- 43s
.7 W.

THE END.
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